Measuring the Impact of AI in the Diagnosis of Hospitalized Patients

医学 渐晕 随机对照试验 肺炎 心理干预 物理疗法 梅德林 重症监护医学 急诊医学 外科 内科学 护理部 政治学 法学 心理学 社会心理学
作者
Sarah Jabbour,David F. Fouhey,Stephanie A. Shepard,Thomas S. Valley,Ella A. Kazerooni,Nikola Banović,Jenna Wiens,Michael W. Sjoding
出处
期刊:JAMA [American Medical Association]
卷期号:330 (23): 2275-2275 被引量:67
标识
DOI:10.1001/jama.2023.22295
摘要

Importance Artificial intelligence (AI) could support clinicians when diagnosing hospitalized patients; however, systematic bias in AI models could worsen clinician diagnostic accuracy. Recent regulatory guidance has called for AI models to include explanations to mitigate errors made by models, but the effectiveness of this strategy has not been established. Objectives To evaluate the impact of systematically biased AI on clinician diagnostic accuracy and to determine if image-based AI model explanations can mitigate model errors. Design, Setting, and Participants Randomized clinical vignette survey study administered between April 2022 and January 2023 across 13 US states involving hospitalist physicians, nurse practitioners, and physician assistants. Interventions Clinicians were shown 9 clinical vignettes of patients hospitalized with acute respiratory failure, including their presenting symptoms, physical examination, laboratory results, and chest radiographs. Clinicians were then asked to determine the likelihood of pneumonia, heart failure, or chronic obstructive pulmonary disease as the underlying cause(s) of each patient’s acute respiratory failure. To establish baseline diagnostic accuracy, clinicians were shown 2 vignettes without AI model input. Clinicians were then randomized to see 6 vignettes with AI model input with or without AI model explanations. Among these 6 vignettes, 3 vignettes included standard-model predictions, and 3 vignettes included systematically biased model predictions. Main Outcomes and Measures Clinician diagnostic accuracy for pneumonia, heart failure, and chronic obstructive pulmonary disease. Results Median participant age was 34 years (IQR, 31-39) and 241 (57.7%) were female. Four hundred fifty-seven clinicians were randomized and completed at least 1 vignette, with 231 randomized to AI model predictions without explanations, and 226 randomized to AI model predictions with explanations. Clinicians’ baseline diagnostic accuracy was 73.0% (95% CI, 68.3% to 77.8%) for the 3 diagnoses. When shown a standard AI model without explanations, clinician accuracy increased over baseline by 2.9 percentage points (95% CI, 0.5 to 5.2) and by 4.4 percentage points (95% CI, 2.0 to 6.9) when clinicians were also shown AI model explanations. Systematically biased AI model predictions decreased clinician accuracy by 11.3 percentage points (95% CI, 7.2 to 15.5) compared with baseline and providing biased AI model predictions with explanations decreased clinician accuracy by 9.1 percentage points (95% CI, 4.9 to 13.2) compared with baseline, representing a nonsignificant improvement of 2.3 percentage points (95% CI, −2.7 to 7.2) compared with the systematically biased AI model. Conclusions and Relevance Although standard AI models improve diagnostic accuracy, systematically biased AI models reduced diagnostic accuracy, and commonly used image-based AI model explanations did not mitigate this harmful effect. Trial Registration ClinicalTrials.gov Identifier: NCT06098950
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不远完成签到,获得积分10
刚刚
冯珂完成签到 ,获得积分10
2秒前
Graham完成签到,获得积分10
2秒前
稳重乌冬面完成签到 ,获得积分10
4秒前
一苇以航完成签到 ,获得积分10
5秒前
戚雅柔完成签到 ,获得积分10
5秒前
vsvsgo完成签到,获得积分10
6秒前
米奇完成签到 ,获得积分10
6秒前
加一点荒谬完成签到,获得积分10
6秒前
6秒前
一一一给轻松白桃的求助进行了留言
8秒前
zz2905完成签到,获得积分10
8秒前
小超人完成签到 ,获得积分10
9秒前
香蕉初瑶完成签到,获得积分10
9秒前
meimei完成签到 ,获得积分10
9秒前
儒雅的菠萝吹雪完成签到,获得积分10
10秒前
10秒前
11秒前
水寒完成签到,获得积分10
11秒前
拉长的念珍完成签到,获得积分10
12秒前
大气夜山完成签到 ,获得积分10
12秒前
Tristan完成签到 ,获得积分10
14秒前
我思故我在完成签到,获得积分10
14秒前
15秒前
何浏亮完成签到,获得积分10
16秒前
阿成完成签到,获得积分10
16秒前
Pauline完成签到 ,获得积分10
16秒前
17秒前
微笑的语芙完成签到,获得积分10
17秒前
17秒前
小背包完成签到 ,获得积分10
17秒前
水寒发布了新的文献求助10
19秒前
希望天下0贩的0应助17采纳,获得10
19秒前
yu完成签到 ,获得积分10
19秒前
钟瑞乾完成签到,获得积分10
19秒前
花痴的电灯泡完成签到,获得积分10
20秒前
虚心念桃完成签到,获得积分10
21秒前
jiaolulu发布了新的文献求助10
22秒前
zyw完成签到 ,获得积分10
22秒前
ironsilica完成签到,获得积分10
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022