Measuring the Impact of AI in the Diagnosis of Hospitalized Patients

医学 渐晕 随机对照试验 肺炎 心理干预 物理疗法 梅德林 重症监护医学 急诊医学 外科 内科学 护理部 政治学 法学 心理学 社会心理学
作者
Sarah Jabbour,David F. Fouhey,Stephanie A. Shepard,Thomas S. Valley,Ella A. Kazerooni,Nikola Banović,Jenna Wiens,Michael W. Sjoding
出处
期刊:JAMA [American Medical Association]
卷期号:330 (23): 2275-2275 被引量:67
标识
DOI:10.1001/jama.2023.22295
摘要

Importance Artificial intelligence (AI) could support clinicians when diagnosing hospitalized patients; however, systematic bias in AI models could worsen clinician diagnostic accuracy. Recent regulatory guidance has called for AI models to include explanations to mitigate errors made by models, but the effectiveness of this strategy has not been established. Objectives To evaluate the impact of systematically biased AI on clinician diagnostic accuracy and to determine if image-based AI model explanations can mitigate model errors. Design, Setting, and Participants Randomized clinical vignette survey study administered between April 2022 and January 2023 across 13 US states involving hospitalist physicians, nurse practitioners, and physician assistants. Interventions Clinicians were shown 9 clinical vignettes of patients hospitalized with acute respiratory failure, including their presenting symptoms, physical examination, laboratory results, and chest radiographs. Clinicians were then asked to determine the likelihood of pneumonia, heart failure, or chronic obstructive pulmonary disease as the underlying cause(s) of each patient’s acute respiratory failure. To establish baseline diagnostic accuracy, clinicians were shown 2 vignettes without AI model input. Clinicians were then randomized to see 6 vignettes with AI model input with or without AI model explanations. Among these 6 vignettes, 3 vignettes included standard-model predictions, and 3 vignettes included systematically biased model predictions. Main Outcomes and Measures Clinician diagnostic accuracy for pneumonia, heart failure, and chronic obstructive pulmonary disease. Results Median participant age was 34 years (IQR, 31-39) and 241 (57.7%) were female. Four hundred fifty-seven clinicians were randomized and completed at least 1 vignette, with 231 randomized to AI model predictions without explanations, and 226 randomized to AI model predictions with explanations. Clinicians’ baseline diagnostic accuracy was 73.0% (95% CI, 68.3% to 77.8%) for the 3 diagnoses. When shown a standard AI model without explanations, clinician accuracy increased over baseline by 2.9 percentage points (95% CI, 0.5 to 5.2) and by 4.4 percentage points (95% CI, 2.0 to 6.9) when clinicians were also shown AI model explanations. Systematically biased AI model predictions decreased clinician accuracy by 11.3 percentage points (95% CI, 7.2 to 15.5) compared with baseline and providing biased AI model predictions with explanations decreased clinician accuracy by 9.1 percentage points (95% CI, 4.9 to 13.2) compared with baseline, representing a nonsignificant improvement of 2.3 percentage points (95% CI, −2.7 to 7.2) compared with the systematically biased AI model. Conclusions and Relevance Although standard AI models improve diagnostic accuracy, systematically biased AI models reduced diagnostic accuracy, and commonly used image-based AI model explanations did not mitigate this harmful effect. Trial Registration ClinicalTrials.gov Identifier: NCT06098950
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助典雅的土豆采纳,获得10
刚刚
刚刚
cheems完成签到,获得积分10
刚刚
1秒前
顾矜应助鱼儿采纳,获得10
2秒前
cheems发布了新的文献求助10
2秒前
内向寒云发布了新的文献求助10
3秒前
意林完成签到,获得积分20
5秒前
7秒前
8秒前
田様应助懒洋洋采纳,获得10
9秒前
9秒前
舒适的冰凡完成签到,获得积分10
11秒前
上官发布了新的文献求助10
13秒前
13秒前
13秒前
不会吹口哨完成签到,获得积分10
14秒前
钙离子发布了新的文献求助10
14秒前
英俊的铭应助澡雪采纳,获得10
16秒前
稗子发布了新的文献求助10
17秒前
HeJiangle发布了新的文献求助10
17秒前
顾矜应助默默书竹采纳,获得10
19秒前
比巴卜发布了新的文献求助10
19秒前
CC发布了新的文献求助10
20秒前
夕夕口口完成签到,获得积分10
20秒前
1111应助AHA采纳,获得20
22秒前
牛虻发布了新的文献求助10
25秒前
orixero应助山语采纳,获得10
25秒前
25秒前
Master完成签到 ,获得积分10
26秒前
26秒前
月儿完成签到 ,获得积分10
27秒前
1177发布了新的文献求助10
27秒前
勤奋凝安完成签到,获得积分20
27秒前
量子星尘发布了新的文献求助10
29秒前
29秒前
30秒前
31秒前
auggy发布了新的文献求助10
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975836
求助须知:如何正确求助?哪些是违规求助? 3520174
关于积分的说明 11201364
捐赠科研通 3256576
什么是DOI,文献DOI怎么找? 1798362
邀请新用户注册赠送积分活动 877539
科研通“疑难数据库(出版商)”最低求助积分说明 806426