Measuring the Impact of AI in the Diagnosis of Hospitalized Patients

医学 渐晕 随机对照试验 肺炎 心理干预 物理疗法 梅德林 重症监护医学 急诊医学 外科 内科学 护理部 政治学 法学 心理学 社会心理学
作者
Sarah Jabbour,David F. Fouhey,Stephanie A. Shepard,Thomas S. Valley,Ella A. Kazerooni,Nikola Banović,Jenna Wiens,Michael W. Sjoding
出处
期刊:JAMA [American Medical Association]
卷期号:330 (23): 2275-2275 被引量:34
标识
DOI:10.1001/jama.2023.22295
摘要

Importance Artificial intelligence (AI) could support clinicians when diagnosing hospitalized patients; however, systematic bias in AI models could worsen clinician diagnostic accuracy. Recent regulatory guidance has called for AI models to include explanations to mitigate errors made by models, but the effectiveness of this strategy has not been established. Objectives To evaluate the impact of systematically biased AI on clinician diagnostic accuracy and to determine if image-based AI model explanations can mitigate model errors. Design, Setting, and Participants Randomized clinical vignette survey study administered between April 2022 and January 2023 across 13 US states involving hospitalist physicians, nurse practitioners, and physician assistants. Interventions Clinicians were shown 9 clinical vignettes of patients hospitalized with acute respiratory failure, including their presenting symptoms, physical examination, laboratory results, and chest radiographs. Clinicians were then asked to determine the likelihood of pneumonia, heart failure, or chronic obstructive pulmonary disease as the underlying cause(s) of each patient’s acute respiratory failure. To establish baseline diagnostic accuracy, clinicians were shown 2 vignettes without AI model input. Clinicians were then randomized to see 6 vignettes with AI model input with or without AI model explanations. Among these 6 vignettes, 3 vignettes included standard-model predictions, and 3 vignettes included systematically biased model predictions. Main Outcomes and Measures Clinician diagnostic accuracy for pneumonia, heart failure, and chronic obstructive pulmonary disease. Results Median participant age was 34 years (IQR, 31-39) and 241 (57.7%) were female. Four hundred fifty-seven clinicians were randomized and completed at least 1 vignette, with 231 randomized to AI model predictions without explanations, and 226 randomized to AI model predictions with explanations. Clinicians’ baseline diagnostic accuracy was 73.0% (95% CI, 68.3% to 77.8%) for the 3 diagnoses. When shown a standard AI model without explanations, clinician accuracy increased over baseline by 2.9 percentage points (95% CI, 0.5 to 5.2) and by 4.4 percentage points (95% CI, 2.0 to 6.9) when clinicians were also shown AI model explanations. Systematically biased AI model predictions decreased clinician accuracy by 11.3 percentage points (95% CI, 7.2 to 15.5) compared with baseline and providing biased AI model predictions with explanations decreased clinician accuracy by 9.1 percentage points (95% CI, 4.9 to 13.2) compared with baseline, representing a nonsignificant improvement of 2.3 percentage points (95% CI, −2.7 to 7.2) compared with the systematically biased AI model. Conclusions and Relevance Although standard AI models improve diagnostic accuracy, systematically biased AI models reduced diagnostic accuracy, and commonly used image-based AI model explanations did not mitigate this harmful effect. Trial Registration ClinicalTrials.gov Identifier: NCT06098950
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
threewei发布了新的文献求助10
2秒前
周芷卉发布了新的文献求助10
4秒前
桐桐应助thousandlong采纳,获得10
4秒前
汉堡包应助马某某某某某采纳,获得10
5秒前
科研菜鸟完成签到,获得积分10
6秒前
淡淡乐巧完成签到 ,获得积分10
6秒前
7秒前
xzy998应助哈哈采纳,获得10
7秒前
LKX心完成签到 ,获得积分10
8秒前
iNk应助Kevin采纳,获得10
9秒前
思源应助杰森斯坦虎采纳,获得10
9秒前
9秒前
10秒前
xiaofu完成签到,获得积分10
11秒前
12秒前
小任完成签到,获得积分20
12秒前
YUYU完成签到,获得积分10
14秒前
123完成签到,获得积分10
14秒前
石人达发布了新的文献求助10
15秒前
田様应助SARS采纳,获得10
15秒前
15秒前
16秒前
skbkbe完成签到,获得积分10
17秒前
17秒前
思源应助科研通管家采纳,获得10
17秒前
Singularity应助科研通管家采纳,获得20
18秒前
orixero应助科研通管家采纳,获得10
18秒前
Singularity应助科研通管家采纳,获得20
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
一一应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助SwapExisting采纳,获得10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079