Video-based AI for beat-to-beat assessment of cardiac function

射血分数 心室 心脏病学 人工智能 心功能曲线 计算机科学 心力衰竭 医学 内科学
作者
David Ouyang,Bryan He,Amirata Ghorbani,Neal Yuan,Joseph E. Ebinger,Curtis P. Langlotz,Paul A. Heidenreich,Robert A. Harrington,David Liang,Euan A. Ashley,James Zou
出处
期刊:Nature [Springer Nature]
卷期号:580 (7802): 252-256 被引量:565
标识
DOI:10.1038/s41586-020-2145-8
摘要

Accurate assessment of cardiac function is crucial for the diagnosis of cardiovascular disease1, screening for cardiotoxicity2 and decisions regarding the clinical management of patients with a critical illness3. However, human assessment of cardiac function focuses on a limited sampling of cardiac cycles and has considerable inter-observer variability despite years of training4,5. Here, to overcome this challenge, we present a video-based deep learning algorithm-EchoNet-Dynamic-that surpasses the performance of human experts in the critical tasks of segmenting the left ventricle, estimating ejection fraction and assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the left ventricle with a Dice similarity coefficient of 0.92, predicts ejection fraction with a mean absolute error of 4.1% and reliably classifies heart failure with reduced ejection fraction (area under the curve of 0.97). In an external dataset from another healthcare system, EchoNet-Dynamic predicts the ejection fraction with a mean absolute error of 6.0% and classifies heart failure with reduced ejection fraction with an area under the curve of 0.96. Prospective evaluation with repeated human measurements confirms that the model has variance that is comparable to or less than that of human experts. By leveraging information across multiple cardiac cycles, our model can rapidly identify subtle changes in ejection fraction, is more reproducible than human evaluation and lays the foundation for precise diagnosis of cardiovascular disease in real time. As a resource to promote further innovation, we also make publicly available a large dataset of 10,030 annotated echocardiogram videos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助JIE采纳,获得10
1秒前
南庭完成签到,获得积分10
1秒前
杰瑞院士发布了新的文献求助10
2秒前
充电宝应助李星采纳,获得30
2秒前
上官若男应助TJY采纳,获得10
3秒前
CipherSage应助胖虎啊采纳,获得10
6秒前
yujiayou完成签到,获得积分10
6秒前
6秒前
冷酷的乐驹完成签到 ,获得积分10
7秒前
酷波er应助yuaaaann采纳,获得10
7秒前
8秒前
小young完成签到 ,获得积分10
10秒前
Nathan完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
13秒前
曾经的听云完成签到 ,获得积分10
13秒前
12发布了新的文献求助10
13秒前
NexusExplorer应助杰瑞院士采纳,获得10
14秒前
上官若男应助杰瑞院士采纳,获得10
14秒前
薰硝壤应助LILIYI采纳,获得10
14秒前
NPC-CBI完成签到,获得积分10
14秒前
敏感时光完成签到,获得积分10
14秒前
充电宝应助朱佳玉采纳,获得10
15秒前
siso发布了新的文献求助10
16秒前
852应助123butterfly采纳,获得10
16秒前
七七八八发布了新的文献求助10
17秒前
17秒前
orietta关注了科研通微信公众号
17秒前
千桑客完成签到,获得积分10
17秒前
胖虎啊发布了新的文献求助10
19秒前
yuaaaann发布了新的文献求助10
22秒前
22秒前
24秒前
GZX完成签到,获得积分10
25秒前
25秒前
dpp发布了新的文献求助10
25秒前
壮观的衫完成签到,获得积分10
26秒前
siso完成签到,获得积分10
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141127
求助须知:如何正确求助?哪些是违规求助? 2792031
关于积分的说明 7801479
捐赠科研通 2448267
什么是DOI,文献DOI怎么找? 1302482
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601226