A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows

拖延 计算机科学 初始化 人口 流水车间调度 算法 数学优化 调度(生产过程) 作业车间调度 群体行为 局部搜索(优化) 人工智能 地铁列车时刻表 数学 人口学 社会学 程序设计语言 操作系统
作者
Ningning Zhu,Fuqing Zhao,Ling Wang,Ruiqing Ding,Tianpeng Xu,Jonrinaldi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:198: 116921-116921 被引量:12
标识
DOI:10.1016/j.eswa.2022.116921
摘要

The distributed no-wait flow shop scheduling problem with due windows (DNWFSPDW) is a novel and considerable model for modern production chain and large manufacturing industry. The object of total weighted earliness and tardiness (TWETdw) is a common cost indicator in application. A discrete knowledge-guided learning fruit fly optimization algorithm (DKLFOA) is proposed in this study to minimize TWET in DNWFSPDW. A knowledge-based structural initialization method (KNEHdw) is proposed to construct an effective initial solution. In the KNEHdw, the property that the job has no waiting time between processing machines in the no-wait flow shop scheduling problem is abstracted as knowledge to instruct jobs to be placed in possible positions. The swarm center expands from a single individual to an elitist swarm in the vision search stage. A probability knowledge model is established based on the sequence relationship of jobs in the elite population. The feedback information in the iterative process using the probabilistic knowledge model leads the population to search in the direction with a high success rate. The inferior individuals are allocated to the corresponding elite individuals for the local search in the olfactory search stage. The knowledge of weight in due windows is utilized to avoid invalid search during the iteration process. The variable neighborhood descent (VND) strategy is adopted in the local search to enhance the accuracy of the proposed algorithm and jump out of the local optimal. The design of experimental method (DOE) is introduced to calibrate the parameters in the algorithm. The simulation results show that DKLFOA has advantages for solving DNWFSPDW problems comparing with the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
参差完成签到,获得积分10
1秒前
脑洞疼应助符宇新采纳,获得30
1秒前
冷傲的xu发布了新的文献求助10
1秒前
ludong_0应助Niyuw采纳,获得10
2秒前
爆米花应助ikea1984采纳,获得10
3秒前
顾矜应助霸的彤采纳,获得10
3秒前
SciGPT应助欣新采纳,获得10
3秒前
ZMmmm发布了新的文献求助30
4秒前
ELITOmiko发布了新的文献求助10
5秒前
5秒前
大鹏发布了新的文献求助20
5秒前
矛尾复虾虎鱼完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助冷傲的xu采纳,获得10
7秒前
8秒前
喜悦小猫咪完成签到,获得积分10
9秒前
9秒前
Kiosta发布了新的文献求助20
9秒前
9秒前
十四发布了新的文献求助10
11秒前
账号已注销完成签到,获得积分20
11秒前
jyy发布了新的文献求助200
11秒前
玛卡巴卡发布了新的文献求助20
12秒前
Owen应助酷炫芝麻采纳,获得10
12秒前
12秒前
冷傲的xu完成签到,获得积分10
12秒前
12秒前
13秒前
abai发布了新的文献求助10
13秒前
CipherSage应助淡定的纹采纳,获得10
13秒前
14秒前
dezhi发布了新的文献求助10
14秒前
qsxy关注了科研通微信公众号
15秒前
15秒前
xiaofutongxue发布了新的文献求助10
15秒前
科研巨头完成签到,获得积分10
15秒前
15秒前
彭于彦祖应助账号已注销采纳,获得50
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958441
求助须知:如何正确求助?哪些是违规求助? 3504750
关于积分的说明 11119733
捐赠科研通 3235904
什么是DOI,文献DOI怎么找? 1788601
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802605