A discrete learning fruit fly algorithm based on knowledge for the distributed no-wait flow shop scheduling with due windows

拖延 计算机科学 初始化 人口 流水车间调度 算法 数学优化 调度(生产过程) 作业车间调度 群体行为 局部搜索(优化) 人工智能 地铁列车时刻表 数学 人口学 社会学 程序设计语言 操作系统
作者
Ningning Zhu,Fuqing Zhao,Ling Wang,Ruiqing Ding,Tianpeng Xu,Jonrinaldi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:198: 116921-116921 被引量:12
标识
DOI:10.1016/j.eswa.2022.116921
摘要

The distributed no-wait flow shop scheduling problem with due windows (DNWFSPDW) is a novel and considerable model for modern production chain and large manufacturing industry. The object of total weighted earliness and tardiness (TWETdw) is a common cost indicator in application. A discrete knowledge-guided learning fruit fly optimization algorithm (DKLFOA) is proposed in this study to minimize TWET in DNWFSPDW. A knowledge-based structural initialization method (KNEHdw) is proposed to construct an effective initial solution. In the KNEHdw, the property that the job has no waiting time between processing machines in the no-wait flow shop scheduling problem is abstracted as knowledge to instruct jobs to be placed in possible positions. The swarm center expands from a single individual to an elitist swarm in the vision search stage. A probability knowledge model is established based on the sequence relationship of jobs in the elite population. The feedback information in the iterative process using the probabilistic knowledge model leads the population to search in the direction with a high success rate. The inferior individuals are allocated to the corresponding elite individuals for the local search in the olfactory search stage. The knowledge of weight in due windows is utilized to avoid invalid search during the iteration process. The variable neighborhood descent (VND) strategy is adopted in the local search to enhance the accuracy of the proposed algorithm and jump out of the local optimal. The design of experimental method (DOE) is introduced to calibrate the parameters in the algorithm. The simulation results show that DKLFOA has advantages for solving DNWFSPDW problems comparing with the state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奇怪的柒完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
文静的枫叶完成签到,获得积分10
2秒前
科目三应助神麒小雪采纳,获得10
2秒前
zzznznnn发布了新的文献求助10
3秒前
pbf发布了新的文献求助20
3秒前
科研通AI5应助有风采纳,获得10
4秒前
Lin完成签到,获得积分10
4秒前
科研通AI5应助肉松小贝采纳,获得10
5秒前
粉色完成签到,获得积分10
5秒前
Ll发布了新的文献求助10
5秒前
5秒前
愉快彩虹发布了新的文献求助10
6秒前
CTL完成签到,获得积分10
6秒前
6秒前
共享精神应助加减乘除采纳,获得10
6秒前
6秒前
恬恬完成签到,获得积分10
6秒前
7秒前
22发布了新的文献求助10
7秒前
aacc956发布了新的文献求助10
7秒前
7秒前
谨慎涵柏完成签到,获得积分10
8秒前
快乐的如风完成签到,获得积分10
9秒前
10秒前
吃猫的鱼完成签到,获得积分10
10秒前
脑洞疼应助润润轩轩采纳,获得10
11秒前
刘文静完成签到,获得积分10
12秒前
Southluuu发布了新的文献求助10
12秒前
chenjyuu发布了新的文献求助10
12秒前
12秒前
粗暴的仙人掌完成签到,获得积分20
12秒前
13秒前
13秒前
13秒前
logic发布了新的文献求助10
13秒前
习习应助生动的雨竹采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759