Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review

纳米流体 涡流器 传热 强化传热 对流换热 材料科学 机械 磁流体驱动 雷诺数 热力学 磁场 磁流体力学 传热系数 物理 湍流 量子力学
作者
Mehmet Gürdal,Kamil Arslan,Engin Gedik,Alina Adriana Minea
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:162: 112453-112453 被引量:50
标识
DOI:10.1016/j.rser.2022.112453
摘要

Recent studies in the field of thermal engineering revealed that employing nanofluid as a working fluid in a specific channel, considering both turbulators and magnetic field effect is scarce. Studies on the convective heat transfer performance of the thermal systems focus mostly on the effect of using either nanofluid as a new fluid, magnetic field, or turbulators. This review highlights the single and combined effects of these parameters on the heat transfer enhancement of such systems. Nanofluid type, its volume fraction, channel and turbulator geometry, magnetic field type, and flow regime were considered as the base parameters while the enhancement in heat transfer is evaluated. From a state-of-the-art review, it was noticed that most studies reveal that increasing the volume fraction of nanofluid, magnetic field strength, and Reynolds number can attain an upsurge in the heat transfer in a specific channel. Nevertheless, drawbacks are poorly discussed in the open literature. Regarding the turbulator geometry, which actually limits the magnetohydrodynamic and thermal boundary layer development, its complexity boosts also the convective heat transfer. The maximum heat transfer enhancement was noticed for higher nanoparticle volume fractions, higher magnetic field strengths, and complex geometries in channel flow. The highest heat transfer improvement was obtained for the MWCNT/H2O nanofluid (i.e., between 70% and 190%). With the effect of magnetic field intensity of Ha = 30 applied to the Cu/H2O nanofluid flow, a thermal recovery of 76% was achieved. Concluding, this comprehensive review can be beneficial to researchers working in the field of flow and heat transfer applications with the use of nanofluid, turbulator, and magnetic field together.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默念发布了新的文献求助10
2秒前
Hello应助asd采纳,获得10
2秒前
默念完成签到,获得积分10
8秒前
9秒前
luanzhaohui完成签到,获得积分10
10秒前
自然的听寒完成签到 ,获得积分10
10秒前
11秒前
加油鸭发布了新的文献求助10
11秒前
13秒前
only完成签到,获得积分20
14秒前
xiaobei发布了新的文献求助30
14秒前
16秒前
20秒前
迷人幻波发布了新的文献求助10
20秒前
zmy发布了新的文献求助10
20秒前
orixero应助zhlh采纳,获得10
21秒前
非一样的感觉完成签到,获得积分10
21秒前
852应助xiaobei采纳,获得30
22秒前
不配.应助科研通管家采纳,获得20
22秒前
siyu0416应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
24秒前
方超完成签到,获得积分10
25秒前
26秒前
ured发布了新的文献求助10
26秒前
略略略完成签到 ,获得积分10
27秒前
28秒前
30秒前
有使不完牛劲的正主完成签到,获得积分10
31秒前
飞翔的丫蛋完成签到,获得积分0
31秒前
彪壮的若男完成签到 ,获得积分10
32秒前
32秒前
小蘑菇应助憨憨采纳,获得30
36秒前
36秒前
我一进来就看到常威在打来福完成签到,获得积分10
36秒前
37秒前
37秒前
乱世才子完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323