The importance of covariate selection in controlling for selection bias in observational studies.

协变量 观察研究 选择偏差 选择(遗传算法) 统计 计量经济学 随机试验 结果(博弈论) 心理学 计算机科学 数学 机器学习 数理经济学
作者
Peter M. Steiner,Thomas D. Cook,William R. Shadish,M. H. Clark
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:15 (3): 250-267 被引量:454
标识
DOI:10.1037/a0018719
摘要

The assumption of strongly ignorable treatment assignment is required for eliminating selection bias in observational studies. To meet this assumption, researchers often rely on a strategy of selecting covariates that they think will control for selection bias. Theory indicates that the most important covariates are those highly correlated with both the real selection process and the potential outcomes. However, when planning a study, it is rarely possible to identify such covariates with certainty. In this article, we report on an extensive reanalysis of a within-study comparison that contrasts a randomized experiment and a quasi-experiment. Various covariate sets were used to adjust for initial group differences in the quasi-experiment that was characterized by self-selection into treatment. The adjusted effect sizes were then compared with the experimental ones to identify which individual covariates, and which conceptually grouped sets of covariates, were responsible for the high degree of bias reduction achieved in the adjusted quasi-experiment. Such results provide strong clues about preferred strategies for identifying the covariates most likely to reduce bias when planning a study and when the true selection process is not known.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jzhaoc580完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
kkjust完成签到,获得积分10
6秒前
ChatGPT发布了新的文献求助10
8秒前
斯文的思菱完成签到,获得积分10
11秒前
然大宝发布了新的文献求助10
11秒前
swordshine完成签到,获得积分0
12秒前
12秒前
Swait完成签到,获得积分10
16秒前
闻巷雨完成签到 ,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
木木杨完成签到,获得积分10
23秒前
雪糕发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
al完成签到 ,获得积分0
29秒前
29秒前
量子星尘发布了新的文献求助10
29秒前
33秒前
dldldl完成签到,获得积分10
36秒前
Gary发布了新的文献求助30
39秒前
方方完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
滴滴完成签到 ,获得积分10
42秒前
小亮哈哈完成签到,获得积分0
42秒前
Research完成签到 ,获得积分10
44秒前
adamchase完成签到,获得积分10
47秒前
ChatGPT发布了新的文献求助10
47秒前
i2stay完成签到,获得积分0
48秒前
圣晟胜完成签到,获得积分10
54秒前
55秒前
CGFHEMAN完成签到 ,获得积分10
57秒前
yutingemail完成签到 ,获得积分10
57秒前
止戈为武完成签到,获得积分10
58秒前
Jeffery426完成签到,获得积分10
1分钟前
yx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936