The importance of covariate selection in controlling for selection bias in observational studies.

协变量 观察研究 选择偏差 选择(遗传算法) 统计 计量经济学 随机试验 结果(博弈论) 心理学 计算机科学 数学 机器学习 数理经济学
作者
Peter M. Steiner,Thomas D. Cook,William R. Shadish,M. H. Clark
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:15 (3): 250-267 被引量:454
标识
DOI:10.1037/a0018719
摘要

The assumption of strongly ignorable treatment assignment is required for eliminating selection bias in observational studies. To meet this assumption, researchers often rely on a strategy of selecting covariates that they think will control for selection bias. Theory indicates that the most important covariates are those highly correlated with both the real selection process and the potential outcomes. However, when planning a study, it is rarely possible to identify such covariates with certainty. In this article, we report on an extensive reanalysis of a within-study comparison that contrasts a randomized experiment and a quasi-experiment. Various covariate sets were used to adjust for initial group differences in the quasi-experiment that was characterized by self-selection into treatment. The adjusted effect sizes were then compared with the experimental ones to identify which individual covariates, and which conceptually grouped sets of covariates, were responsible for the high degree of bias reduction achieved in the adjusted quasi-experiment. Such results provide strong clues about preferred strategies for identifying the covariates most likely to reduce bias when planning a study and when the true selection process is not known.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单生活完成签到 ,获得积分10
刚刚
张杰完成签到,获得积分10
刚刚
彭于晏应助sudo rm采纳,获得10
3秒前
4秒前
6秒前
酷波er应助美满若颜采纳,获得10
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
kyJYbs完成签到,获得积分10
7秒前
Wxj246801完成签到,获得积分10
8秒前
科研小贩发布了新的文献求助10
9秒前
斯文败类应助难寻采纳,获得10
9秒前
贪玩阑香发布了新的文献求助10
9秒前
10秒前
Yao发布了新的文献求助30
12秒前
最长的旅途完成签到,获得积分20
13秒前
赘婿应助名字长丶好记采纳,获得10
14秒前
千初完成签到,获得积分10
15秒前
qiuxu完成签到,获得积分10
16秒前
单纯的又菱完成签到,获得积分10
16秒前
留胡子的海完成签到,获得积分10
17秒前
梁婷婷关注了科研通微信公众号
17秒前
王来敏完成签到,获得积分10
17秒前
19秒前
21秒前
21秒前
kyt完成签到 ,获得积分10
21秒前
小号完成签到,获得积分10
21秒前
21秒前
XSB完成签到,获得积分10
22秒前
FashionBoy应助王松桐采纳,获得10
23秒前
丘比特应助TTOM采纳,获得10
23秒前
西咪替丁完成签到 ,获得积分10
24秒前
24秒前
小屏呀发布了新的文献求助10
25秒前
Taylor完成签到 ,获得积分10
26秒前
俭朴水风完成签到,获得积分10
26秒前
烟花应助橙子采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256