亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The importance of covariate selection in controlling for selection bias in observational studies.

协变量 观察研究 选择偏差 选择(遗传算法) 统计 计量经济学 随机试验 结果(博弈论) 心理学 计算机科学 数学 机器学习 数理经济学
作者
Peter M. Steiner,Thomas D. Cook,William R. Shadish,M. H. Clark
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:15 (3): 250-267 被引量:454
标识
DOI:10.1037/a0018719
摘要

The assumption of strongly ignorable treatment assignment is required for eliminating selection bias in observational studies. To meet this assumption, researchers often rely on a strategy of selecting covariates that they think will control for selection bias. Theory indicates that the most important covariates are those highly correlated with both the real selection process and the potential outcomes. However, when planning a study, it is rarely possible to identify such covariates with certainty. In this article, we report on an extensive reanalysis of a within-study comparison that contrasts a randomized experiment and a quasi-experiment. Various covariate sets were used to adjust for initial group differences in the quasi-experiment that was characterized by self-selection into treatment. The adjusted effect sizes were then compared with the experimental ones to identify which individual covariates, and which conceptually grouped sets of covariates, were responsible for the high degree of bias reduction achieved in the adjusted quasi-experiment. Such results provide strong clues about preferred strategies for identifying the covariates most likely to reduce bias when planning a study and when the true selection process is not known.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旷野完成签到 ,获得积分10
1秒前
8秒前
10秒前
11秒前
文献求助发布了新的文献求助10
16秒前
安芳发布了新的文献求助20
17秒前
20秒前
VDC发布了新的文献求助10
21秒前
30秒前
YNHN发布了新的文献求助10
33秒前
华仔应助自行车采纳,获得30
40秒前
儒雅的十八完成签到,获得积分10
40秒前
Criminology34举报tttt求助涉嫌违规
45秒前
李健应助YNHN采纳,获得10
49秒前
研究XPD的小麻薯完成签到,获得积分10
57秒前
bkagyin应助安芳采纳,获得10
1分钟前
1分钟前
哈哈我发布了新的文献求助10
1分钟前
1分钟前
自行车发布了新的文献求助30
1分钟前
1分钟前
自行车完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
迷路平安发布了新的文献求助10
1分钟前
1分钟前
英姑应助迷路平安采纳,获得10
1分钟前
邬美杰发布了新的文献求助10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
liutao应助科研通管家采纳,获得10
1分钟前
迷路平安完成签到,获得积分10
1分钟前
1分钟前
1分钟前
落寞惮发布了新的文献求助10
1分钟前
1分钟前
2分钟前
123发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478