已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning-Assisted Development of Sensitive Electrode Materials for Mixed Potential-Type NO2Gas Sensors

材料科学 电极 电位传感器 纳米技术 工艺工程 光电子学 电位滴定法 工程类 物理化学 化学
作者
Bin Wang,Weijia Li,Qi Lu,Yueying Zhang,Hao Yu,Lingchu Huang,Tong Wang,Xishuang Liang,Fengmin Liu,Fangmeng Liu,Peng Sun,Geyu Lu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (42): 50121-50131 被引量:24
标识
DOI:10.1021/acsami.1c14531
摘要

Yttrium-stabilized zirconia (YSZ)-based mixed potential-type NOx sensors have broad application prospects in automotive exhaust gas detection. Great efforts continue to be made in developing high-performance sensitive electrode materials for mixed potential-type NO2 gas sensors. However, only five kinds of new sensing electrode materials have been developed for this type of gas sensor in the last 3 years. In this work, four different tree-based machine learning models were trained to find potentially sensitive electrode materials for NO2 detection. More than 400 materials were selected from 8000 materials by the above machine learning models. To further verify the reliability of the model, 13 of these materials containing unexploited elements were selected as sensitive electrode materials for making sensors and testing their gas-sensing performances. The experimental results showed that all 13 materials exhibited good gas-sensing performance for NO2. More interestingly, an electrode material BPO4, which does not contain any metal elements, was also screened out and showed good sensing properties to NO2. In a short period of time, 13 new sensitive electrode materials for NO2 detection were targeted and screened, which was difficult to achieve by a trial-and-error procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
怕黑鲂完成签到 ,获得积分10
4秒前
东郭南珍完成签到,获得积分10
6秒前
东郭南珍发布了新的文献求助10
8秒前
jianning完成签到,获得积分10
12秒前
zorro3574发布了新的文献求助10
13秒前
Leo963852完成签到 ,获得积分10
14秒前
14秒前
14秒前
问归完成签到,获得积分10
15秒前
火星上仰完成签到,获得积分10
16秒前
lllwww完成签到 ,获得积分10
18秒前
龚问萍完成签到 ,获得积分10
18秒前
19秒前
20秒前
Mingchun完成签到 ,获得积分10
21秒前
WUWUWU应助今天爱自己了吗采纳,获得10
22秒前
生姜批发刘哥完成签到 ,获得积分10
22秒前
Pamg完成签到 ,获得积分10
23秒前
小叶完成签到,获得积分10
23秒前
25秒前
保持好心情完成签到 ,获得积分10
27秒前
28秒前
汉堡包应助王撑撑采纳,获得10
29秒前
刻苦的荆发布了新的文献求助10
30秒前
Lis发布了新的文献求助10
31秒前
tree发布了新的文献求助10
32秒前
DreamMaker完成签到,获得积分10
32秒前
33秒前
刻苦的荆完成签到,获得积分10
36秒前
柚子完成签到 ,获得积分10
36秒前
37秒前
37秒前
长情的巧曼完成签到,获得积分10
39秒前
9752249发布了新的文献求助100
42秒前
研友_8KAjJn发布了新的文献求助10
43秒前
杳鸢应助aliu采纳,获得30
43秒前
十三完成签到 ,获得积分10
43秒前
leslie完成签到,获得积分10
45秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307213
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499788
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382