Role of the AMPA receptor in antidepressant effects of ketamine and potential of AMPA receptor potentiators as a novel antidepressant

增强剂 AMPA受体 抗抑郁药 拟精神病 药理学 神经科学 氯胺酮 医学 谷氨酸受体 受体 NMDA受体 心理学 海马体 内科学
作者
Atsushi Suzuki,Hiroe Hara,Haruhide Kimura
出处
期刊:Neuropharmacology [Elsevier]
卷期号:222: 109308-109308 被引量:21
标识
DOI:10.1016/j.neuropharm.2022.109308
摘要

Ketamine exerts rapid and long-lasting antidepressant effects in patients with treatment-resistant depression. However, its clinical use is limited by its undesirable psychotomimetic side effects. Accumulating evidence from preclinical studies has shown that the antidepressant effects of ketamine are dependent on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) activation, which triggers activation of the mechanistic target of rapamycin pathway and brain-derived neurotrophic factor release. Thus, AMPA-R has emerged as a promising new target for novel antidepressants with a rapid onset of action. However, almost all known AMPA-R potentiators carry the risk of a narrow bell-shaped dose-response curve and a poor safety margin against seizures. Our data suggest that agonistic activity is not only related to the risks of bell-shaped dose-response curves and seizures but also to the reduced synaptic transmission and procognitive effects of AMPA-R potentiators. In this review, we describe our original screening approach that led to the discovery of an investigational AMPA-R potentiator with low agonistic activity, TAK-653. We further review the in vitro and in vivo profiles of TAK-653, including its procognitive and antidepressant-like effects, as well as its safety profile, in comparison with known AMPA-R potentiators with agonistic activity and AMPA, an AMPA-R agonist. The low agnostic activity of TAK-653 may overcome limitations of known AMPA-R potentiators. This article is part of the Special Issue on ‘Ketamine and its Metabolites’.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑猫狗关注了科研通微信公众号
1秒前
不配.应助落寞思柔采纳,获得10
2秒前
布曲完成签到,获得积分10
2秒前
Ella发布了新的文献求助30
4秒前
5秒前
小二郎应助大约在冬季采纳,获得10
6秒前
Leo完成签到 ,获得积分10
8秒前
11秒前
13秒前
18秒前
李欣宇完成签到,获得积分20
18秒前
18秒前
gralish发布了新的文献求助10
18秒前
19秒前
19秒前
23秒前
23秒前
23秒前
FashionBoy应助土豪的飞荷采纳,获得10
27秒前
28秒前
ruby完成签到,获得积分10
28秒前
29秒前
coconut完成签到,获得积分10
29秒前
景初柔发布了新的文献求助10
30秒前
迷惘墨香完成签到 ,获得积分10
30秒前
Ava应助Wav采纳,获得10
31秒前
李欣宇发布了新的文献求助10
35秒前
等待日记本完成签到 ,获得积分10
36秒前
pcx完成签到,获得积分10
37秒前
37秒前
温婉的乞完成签到,获得积分10
38秒前
黑猫狗发布了新的文献求助10
38秒前
gralish关注了科研通微信公众号
39秒前
Alicia完成签到 ,获得积分10
40秒前
43秒前
jbear发布了新的文献求助10
43秒前
可爱的函函应助weisuonan101采纳,获得10
43秒前
44秒前
第十航空军完成签到,获得积分10
45秒前
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825