An improved target detection method based on YOLOv5 in natural orchard environments

果园 聚类分析 稳健性(进化) 瓶颈 计算机视觉 数据库扫描 计算机科学 模式识别(心理学) 人工智能 生物 模糊聚类 树冠聚类算法 生物化学 基因 园艺 嵌入式系统 化学
作者
Jiachuang Zhang,Mimi Tian,Zengrong Yang,Junhui Li,Longlian Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108780-108780 被引量:10
标识
DOI:10.1016/j.compag.2024.108780
摘要

The recognition and localization of fruit tree trunks in orchard are important for orchard operation robots, which are the bases for automatic navigation, fruit tree spraying and fertilization etc. A method was proposed based on machine vision to detect target objects such as fruit tree trunks, person and supporters in orchard by improving the YOLOv5 deep learning algorithm in this paper, which is applicable to the recognition tasks in natural orchard environments. Firstly, 1354 images of the natural orchard collected by camera were image enhanced, weather effects such as rain, snow, bright light, shadow and fog were added to expand the dataset and to increase the robustness of the model. Secondly, the original YOLOv5 model was improved by replacing the Bottleneck network in the C3 module with the lightweight GhostNet V2 to reduce the network parameters, and changing the box loss function CIoU to SIoU in the loss function to make the regression of the detection box more accurate, and coordinate attention mechanism (CA) was added to the network to reduce the interference of useless background information in images. Before training, pre-anchor boxes were generated by using IoU-based K-means clustering, after that the dataset was fed into the improved YOLOv5 for training, and the trained model was used to detect the trunks. Finally, weighted boxes fusion (WBF) was used instead of the non-maximum suppression (NMS) in this paper for the output of the detection boxes. Then the density-based spatial clustering of applications with noise (DBSCAN) algorithm was used for trunk clustering. The improved target detection method was trained and validated on the experimental dataset. The model size is reduced by 43.6 %, model parameters are reduced by 46.9 %, and the mAP reaches 97.1 %, with an average detection speed of 198.2 ms per image. Compared with the original YOLOv5, the model is more lightweight, the detection accuracy and speed are improved. The improved YOLOv5 is also better than YOLOv3, NanoDet and SSD in terms of combined accuracy and speed, and has similar performance to YOLO_MobileNet in orchard dataset. The experimental results show that the improved YOLOv5 target detection model proposed in this paper is lightweight while still having better detection accuracy and detection speed in complex environments, and the model is small enough to be deployed to mobile or low-performance terminals for target detection in natural orchard environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眉间一把刀完成签到,获得积分10
2秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
7秒前
852应助神华采纳,获得10
8秒前
岗岗发布了新的文献求助10
9秒前
酷波er应助jing采纳,获得10
10秒前
未来可期发布了新的文献求助10
11秒前
阿喵发布了新的文献求助10
12秒前
19秒前
阿喵完成签到,获得积分10
19秒前
奥特曼的奥特蛋完成签到,获得积分10
20秒前
21秒前
22秒前
共享精神应助学五渣采纳,获得10
22秒前
5High_0完成签到 ,获得积分10
23秒前
23秒前
三瓣橘子应助mmm采纳,获得10
24秒前
25秒前
jing发布了新的文献求助10
26秒前
温暖发布了新的文献求助10
27秒前
31秒前
素笺生花发布了新的文献求助10
31秒前
冰魂应助豆子采纳,获得10
32秒前
受伤听露完成签到 ,获得积分10
33秒前
Lucas应助guanshujuan采纳,获得10
34秒前
终澈发布了新的文献求助10
35秒前
丘比特应助黄大师采纳,获得10
36秒前
37秒前
40秒前
41秒前
42秒前
研知发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775402
求助须知:如何正确求助?哪些是违规求助? 3321094
关于积分的说明 10203375
捐赠科研通 3035963
什么是DOI,文献DOI怎么找? 1665887
邀请新用户注册赠送积分活动 797128
科研通“疑难数据库(出版商)”最低求助积分说明 757744