A machine-learning-based composition design of ternary Cu-based Rochow-Müller catalyst with high M2 selectivity

三元运算 选择性 催化作用 堆积 作文(语言) 异质结 材料科学 化学 化学工程 计算机科学 光电子学 工程类 有机化学 程序设计语言 语言学 哲学
作者
Tianrun Ma,Jianwei Wang,Liqing Ban,Huijun He,Ziliang Lu,Jie Zhu,Xiaoling Ma
出处
期刊:Applied Catalysis A-general [Elsevier]
卷期号:675: 119592-119592 被引量:1
标识
DOI:10.1016/j.apcata.2024.119592
摘要

To find ternary Cu-based catalysts (Cu/Cu2O/CuO) compositions with the highest M2 selectivity(SM2) in Rochow-Müller reaction, a machine learning (ML) framework including prediction and optimization models was created. The Stacking integration approach was used to describe the relationship between the catalyst's structures features and SM2 for prediction model. Further, the composition space was effectively searched for compositions with the highest SM2 by optimization model with the genetic algorithm (GA) in the base of prediction model. Finally, the greatest SM2 catalyst compositions were effectively suggested by the ML framework, and the constructed catalyst had an SM2 of 82.35%, with a relative error of only 0.93% from the predicted value. ML model combined with experimental characterization was used to infer the synergistic mechanism of the ternary Cu-based catalysts. Cu/Cu2O and Cu2O/CuO contact surfaces can create heterojunction and Schottky junction structures, respectively, to facilitate the transport of electron-hole pairs and the formation of active spices. ML framework achieved compositional optimization of catalysts and were successfully integrated with materials science theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Congmingzhen发布了新的文献求助10
刚刚
jansorchen完成签到,获得积分10
刚刚
lc完成签到,获得积分10
1秒前
2秒前
seine发布了新的文献求助10
2秒前
小羊完成签到,获得积分10
2秒前
3秒前
huahua完成签到 ,获得积分10
3秒前
老孙完成签到,获得积分10
3秒前
卡卡完成签到,获得积分10
4秒前
甜甜玫瑰应助mozaiyan采纳,获得10
4秒前
4秒前
5秒前
竹筏过海完成签到,获得积分0
6秒前
6秒前
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
鲤鱼鸽子应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
自由可乐应助科研通管家采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
WWQ应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
上官志鹏发布了新的文献求助10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712