A machine-learning-based composition design of ternary Cu-based Rochow-Müller catalyst with high M2 selectivity

三元运算 选择性 催化作用 堆积 作文(语言) 异质结 材料科学 化学 化学工程 计算机科学 光电子学 工程类 有机化学 程序设计语言 语言学 哲学
作者
Tianrun Ma,Jianwei Wang,Liqing Ban,Huijun He,Ziliang Lu,Jie Zhu,Xiaoling Ma
出处
期刊:Applied Catalysis A-general [Elsevier]
卷期号:675: 119592-119592 被引量:1
标识
DOI:10.1016/j.apcata.2024.119592
摘要

To find ternary Cu-based catalysts (Cu/Cu2O/CuO) compositions with the highest M2 selectivity(SM2) in Rochow-Müller reaction, a machine learning (ML) framework including prediction and optimization models was created. The Stacking integration approach was used to describe the relationship between the catalyst's structures features and SM2 for prediction model. Further, the composition space was effectively searched for compositions with the highest SM2 by optimization model with the genetic algorithm (GA) in the base of prediction model. Finally, the greatest SM2 catalyst compositions were effectively suggested by the ML framework, and the constructed catalyst had an SM2 of 82.35%, with a relative error of only 0.93% from the predicted value. ML model combined with experimental characterization was used to infer the synergistic mechanism of the ternary Cu-based catalysts. Cu/Cu2O and Cu2O/CuO contact surfaces can create heterojunction and Schottky junction structures, respectively, to facilitate the transport of electron-hole pairs and the formation of active spices. ML framework achieved compositional optimization of catalysts and were successfully integrated with materials science theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
Akim应助夏末采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
迟大猫应助想学习采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
1秒前
期刊应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
最卷的卷心菜完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得50
1秒前
田様应助科研通管家采纳,获得100
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
yun尘世应助科研通管家采纳,获得10
2秒前
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
知性的映之完成签到,获得积分10
2秒前
2秒前
小蘑菇应助圈圈采纳,获得10
2秒前
万能图书馆应助七块采纳,获得10
3秒前
yatou5651发布了新的文献求助10
3秒前
小二郎应助futing采纳,获得10
3秒前
天天快乐应助阿金采纳,获得10
3秒前
flyabc完成签到,获得积分10
4秒前
qp发布了新的文献求助10
4秒前
香蕉觅云应助刘鹏宇采纳,获得10
5秒前
可爱的函函应助沉静哲瀚采纳,获得10
5秒前
5秒前
5秒前
乖乖完成签到,获得积分20
5秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678