A machine-learning-based composition design of ternary Cu-based Rochow-Müller catalyst with high M2 selectivity

三元运算 选择性 催化作用 堆积 作文(语言) 异质结 材料科学 化学 化学工程 计算机科学 光电子学 工程类 有机化学 程序设计语言 语言学 哲学
作者
Tianrun Ma,Jianwei Wang,Liqing Ban,Huijun He,Ziliang Lu,Jie Zhu,Xiaoling Ma
出处
期刊:Applied Catalysis A-general [Elsevier BV]
卷期号:675: 119592-119592 被引量:1
标识
DOI:10.1016/j.apcata.2024.119592
摘要

To find ternary Cu-based catalysts (Cu/Cu2O/CuO) compositions with the highest M2 selectivity(SM2) in Rochow-Müller reaction, a machine learning (ML) framework including prediction and optimization models was created. The Stacking integration approach was used to describe the relationship between the catalyst's structures features and SM2 for prediction model. Further, the composition space was effectively searched for compositions with the highest SM2 by optimization model with the genetic algorithm (GA) in the base of prediction model. Finally, the greatest SM2 catalyst compositions were effectively suggested by the ML framework, and the constructed catalyst had an SM2 of 82.35%, with a relative error of only 0.93% from the predicted value. ML model combined with experimental characterization was used to infer the synergistic mechanism of the ternary Cu-based catalysts. Cu/Cu2O and Cu2O/CuO contact surfaces can create heterojunction and Schottky junction structures, respectively, to facilitate the transport of electron-hole pairs and the formation of active spices. ML framework achieved compositional optimization of catalysts and were successfully integrated with materials science theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽思远完成签到,获得积分10
刚刚
1秒前
jinyu完成签到,获得积分10
1秒前
2秒前
莫天枫关注了科研通微信公众号
2秒前
欢呼的开山完成签到,获得积分10
2秒前
wanci应助生动的如花采纳,获得10
3秒前
3秒前
搜集达人应助雾昂采纳,获得10
4秒前
4秒前
眼睛大毛衣完成签到,获得积分10
5秒前
5秒前
秀丽思远发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
任虎完成签到,获得积分10
8秒前
sduweiyu完成签到 ,获得积分10
9秒前
JXL完成签到,获得积分10
10秒前
Ava应助fafamimireredo采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
YYL发布了新的文献求助10
13秒前
TYL完成签到 ,获得积分10
13秒前
天天开心发布了新的文献求助10
14秒前
14秒前
顺心秋凌发布了新的文献求助20
14秒前
上官若男应助LuciusHe采纳,获得30
16秒前
tujamo完成签到,获得积分10
18秒前
19秒前
ilzhuzhu发布了新的文献求助10
19秒前
放青松完成签到,获得积分10
20秒前
急诊守夜人完成签到 ,获得积分10
22秒前
24秒前
xxxxxxxx2s发布了新的文献求助50
24秒前
NexusExplorer应助33采纳,获得30
25秒前
独特的南风关注了科研通微信公众号
25秒前
情怀应助LXL采纳,获得10
25秒前
chriswu1996完成签到,获得积分10
26秒前
Rabbit完成签到 ,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4573818
求助须知:如何正确求助?哪些是违规求助? 3994068
关于积分的说明 12364512
捐赠科研通 3667269
什么是DOI,文献DOI怎么找? 2021183
邀请新用户注册赠送积分活动 1055282
科研通“疑难数据库(出版商)”最低求助积分说明 942694