材料科学
相(物质)
锰
结晶学
分析化学(期刊)
无机化学
冶金
化学
色谱法
有机化学
作者
Jie Feng,Shaohua Luo,Lixiong Qian,Shengxue Yan,Qing Wang,Xianbing Ji,Yahui Zhang,Xin Liu,Pengqing Hou,Fei Teng
出处
期刊:Small
[Wiley]
日期:2023-02-20
卷期号:19 (20)
被引量:41
标识
DOI:10.1002/smll.202208005
摘要
P2 layered oxides have attracted more and more attention as cathode materials of high-power sodium-ion batteries (SIBs). During the charging process, the release of sodium ions leads to layer slip, which leads to the transformation of P2 phase into O2 phase, resulting in a sharp decline in capacity. However, many cathode materials do not undergo P2 -O2 transition during charging and discharging, but form a "Z" phase. It is proved that the iron-containing compound Na0.67 Ni0.1 Mn0.8 Fe0.1 O2 formed the "Z" phase of the symbiotic structure of the P phase and O phase during high-voltage charging through ex-XRD and HAADF-STEM. During the charging process, the cathode material undergoes a structural change of P2 -OP4 -O2 . With the increase of charging voltage, the O-type superposition mode increases to form an ordered OP4 phase, and the P2 -type superposition mode disappears after further charging to form a pure O2 phase. 57 Fe-Mössbauer spectroscopy revealed that no migration of Fe ions is detected. The O-Ni-O-Mn-Fe-O bond formed in the transition metal MO6 (M = Ni, Mn, Fe) octahedron can inhibit the elongation of the Mn-O bond and improve the electrochemical activity so that P2-Na0.67 Ni0.1 Mn0.8 Fe0.1 O2 has an excellent capacity of 172.4 mAh g-1 and a coulombic efficiency close to 99% at 0.1C.
科研通智能强力驱动
Strongly Powered by AbleSci AI