Triplet Deep Hashing with Joint Supervised Loss for Fast Image Retrieval

计算机科学 散列函数 卷积神经网络 模式识别(心理学) 人工智能 成对比较 水准点(测量) 图像检索 特征哈希 深度学习 点式的 编码(集合论) 机器学习 图像(数学) 哈希表 数学 双重哈希 数学分析 集合(抽象数据类型) 计算机安全 程序设计语言 地理 大地测量学
作者
Mingyong Li,Hongya Wang,Liangliang Wang,Kaixiang Yang,Yingyuan Xiao
标识
DOI:10.1109/ictai.2019.00090
摘要

In recent years, the emerging hashing techniques have been successful in large-scale image retrieval. Due to its strong learning ability, deep hashing has become one of the most promising solutions and achieved good results in practice. However, existing deep hashing methods had some limitations, for example, most methods consider only one kind of supervised loss, which leads to insufficient utilization of supervised information. To address this issue, we proposed a Triplet Deep Hashing method with Joint supervised Loss based on convolution neural network (JLTDH) in this work. The proposed JLTDH method combine triplet likelihood loss and linear classification loss, moreover, the triplet supervised label is adopted, which contains richer supervised information than that of pointwise and pairwise label. At the same time, in order to overcome the cubic increase in the number of triplets and make triplet training more effective, we adopt a novel triplet selection method. The whole process is divided into two stages, in the first stage, taking the triplets generated by the triplet selection method as the input of CNN, the three CNNs with shared weights are used for image feature learning, the last layer of the network outputs a preliminary hash code. In the second stage, relying on the hash code of the first stage and the joint loss function, the neural network model is further optimized so that the generated hash code has higher query precision. We perform extensive experiments on three public benchmark datasets CIFAR-10, NUS-WIDE, and MS-COCO. Experimental results demonstrate that the proposed method outperforms the compared methods, the method is also superior to all previous deep hashing methods based on triplet label.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王羲之发布了新的文献求助10
刚刚
彩色橘子完成签到 ,获得积分10
1秒前
Owen应助Yara.H采纳,获得10
3秒前
4秒前
完美世界应助高高的沛容采纳,获得10
5秒前
对方正在看文献完成签到,获得积分10
6秒前
笑面客发布了新的文献求助10
7秒前
法兰克福的杰菲德Jeffred关注了科研通微信公众号
9秒前
机智张完成签到,获得积分10
10秒前
王羲之完成签到,获得积分10
11秒前
937989656完成签到,获得积分10
18秒前
21秒前
22秒前
22秒前
珊瑚海123完成签到,获得积分10
23秒前
大个应助LHE采纳,获得10
24秒前
JamesPei应助长情冰露采纳,获得10
24秒前
望北完成签到 ,获得积分10
25秒前
纯情的严青完成签到,获得积分10
25秒前
xrsetdrdrdy发布了新的文献求助10
26秒前
26秒前
笑面客发布了新的文献求助10
26秒前
27秒前
俊逸的香萱完成签到,获得积分10
27秒前
夏沫发布了新的文献求助10
28秒前
29秒前
31秒前
香蕉觅云应助阳光采纳,获得10
32秒前
zzz发布了新的文献求助10
32秒前
酷波er应助动人的如霜采纳,获得10
33秒前
36秒前
PageSeo2应助西瘡采纳,获得10
38秒前
科研通AI5应助西瘡采纳,获得10
38秒前
39秒前
zjh发布了新的文献求助10
40秒前
FJ发布了新的文献求助10
40秒前
40秒前
科研副本完成签到,获得积分10
41秒前
41秒前
傲娇不可发布了新的文献求助10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766180
求助须知:如何正确求助?哪些是违规求助? 3310544
关于积分的说明 10155352
捐赠科研通 3025845
什么是DOI,文献DOI怎么找? 1660729
邀请新用户注册赠送积分活动 793570
科研通“疑难数据库(出版商)”最低求助积分说明 755679