Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning

无线电技术 帕金森病 人工智能 计算机科学 机器学习 疾病 鉴定(生物学) 医学 病理 生物 植物
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Abdollah Saberi,Ghasem Hajianfar,Hamid Soltanian‐Zadeh,Arman Rahmim
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:129: 104142-104142 被引量:43
标识
DOI:10.1016/j.compbiomed.2020.104142
摘要

Abstract Objectives It is important to subdivide Parkinson's disease (PD) into subtypes, enabling potentially earlier disease recognition and tailored treatment strategies. We aimed to identify reproducible PD subtypes robust to variations in the number of patients and features. Methods We applied multiple feature-reduction and cluster-analysis methods to cross-sectional and timeless data, extracted from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative; 885 PD/163 healthy-control visits; 35 datasets with combinations of non-imaging, conventional-imaging, and radiomics features from DAT-SPECT images). Hybrid machine-learning systems were constructed invoking 16 feature-reduction algorithms, 8 clustering algorithms, and 16 classifiers (C-index clustering evaluation used on each trajectory). We subsequently performed: i) identification of optimal subtypes, ii) multiple independent tests to assess reproducibility, iii) further confirmation by a statistical approach, iv) test of reproducibility to the size of the samples. Results When using no radiomics features, the clusters were not robust to variations in features, whereas, utilizing radiomics information enabled consistent generation of clusters through ensemble analysis of trajectories. We arrived at 3 distinct subtypes, confirmed using the training and testing process of k-means, as well as Hotelling's T2 test. The 3 identified PD subtypes were 1) mild; 2) intermediate; and 3) severe, especially in terms of dopaminergic deficit (imaging), with some escalating motor and non-motor manifestations. Conclusion Appropriate hybrid systems and independent statistical tests enable robust identification of 3 distinct PD subtypes. This was assisted by utilizing radiomics features from SPECT images (segmented using MRI). The PD subtypes provided were robust to the number of the subjects, and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小甲同学发布了新的文献求助10
1秒前
小蘑菇应助xiaolong0325ly采纳,获得10
1秒前
joseph完成签到,获得积分10
2秒前
dypdyp应助山语采纳,获得10
4秒前
ice完成签到,获得积分10
5秒前
长木木完成签到,获得积分20
6秒前
8秒前
可爱的函函应助juwish采纳,获得10
11秒前
情怀应助向日魁采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
梅川秋裤完成签到,获得积分10
13秒前
自由千风发布了新的文献求助10
13秒前
sai完成签到,获得积分10
13秒前
13秒前
三石完成签到 ,获得积分10
13秒前
帅气男孩发布了新的文献求助10
14秒前
meng发布了新的文献求助10
15秒前
安静的难破完成签到,获得积分10
15秒前
asdasd完成签到,获得积分10
16秒前
waypeter完成签到,获得积分10
17秒前
17秒前
大宝完成签到,获得积分10
18秒前
19秒前
苗条从雪完成签到,获得积分10
19秒前
李爱国应助Albertxkcj采纳,获得10
20秒前
lyz完成签到 ,获得积分10
20秒前
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得30
21秒前
852应助科研通管家采纳,获得10
21秒前
黄油板栗应助科研通管家采纳,获得10
21秒前
黄油板栗应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
21秒前
米尔的猫应助科研通管家采纳,获得20
21秒前
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
CodeCraft应助HelloKun采纳,获得10
22秒前
vvvv完成签到,获得积分10
22秒前
大模型应助微笑的桐采纳,获得10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969782
求助须知:如何正确求助?哪些是违规求助? 3514601
关于积分的说明 11174816
捐赠科研通 3249899
什么是DOI,文献DOI怎么找? 1795080
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804886