Robust identification of Parkinson's disease subtypes using radiomics and hybrid machine learning

模式识别(心理学) 支持向量机 机器学习 特征选择 分类器(UML) 特征提取 随机森林 深度学习 鉴定(生物学) 特征(语言学) 交叉验证
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Abdollah Saberi,Ghasem Hajianfar,Hamid Soltanian-Zadeh,Arman Rahmim
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:129: 104142- 被引量:5
标识
DOI:10.1016/j.compbiomed.2020.104142
摘要

Abstract Objectives It is important to subdivide Parkinson's disease (PD) into subtypes, enabling potentially earlier disease recognition and tailored treatment strategies. We aimed to identify reproducible PD subtypes robust to variations in the number of patients and features. Methods We applied multiple feature-reduction and cluster-analysis methods to cross-sectional and timeless data, extracted from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative; 885 PD/163 healthy-control visits; 35 datasets with combinations of non-imaging, conventional-imaging, and radiomics features from DAT-SPECT images). Hybrid machine-learning systems were constructed invoking 16 feature-reduction algorithms, 8 clustering algorithms, and 16 classifiers (C-index clustering evaluation used on each trajectory). We subsequently performed: i) identification of optimal subtypes, ii) multiple independent tests to assess reproducibility, iii) further confirmation by a statistical approach, iv) test of reproducibility to the size of the samples. Results When using no radiomics features, the clusters were not robust to variations in features, whereas, utilizing radiomics information enabled consistent generation of clusters through ensemble analysis of trajectories. We arrived at 3 distinct subtypes, confirmed using the training and testing process of k-means, as well as Hotelling's T2 test. The 3 identified PD subtypes were 1) mild; 2) intermediate; and 3) severe, especially in terms of dopaminergic deficit (imaging), with some escalating motor and non-motor manifestations. Conclusion Appropriate hybrid systems and independent statistical tests enable robust identification of 3 distinct PD subtypes. This was assisted by utilizing radiomics features from SPECT images (segmented using MRI). The PD subtypes provided were robust to the number of the subjects, and features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈莲花发布了新的文献求助10
刚刚
Jessie完成签到,获得积分10
刚刚
希望天下0贩的0应助chengbin采纳,获得10
1秒前
氘代乙腈是不贵的呀完成签到,获得积分10
1秒前
沉静易形完成签到,获得积分10
1秒前
2秒前
realrrr完成签到 ,获得积分10
2秒前
2秒前
早川发布了新的文献求助10
3秒前
mmz完成签到 ,获得积分10
3秒前
3秒前
可可完成签到 ,获得积分10
3秒前
seven发布了新的文献求助10
4秒前
大漠配孤烟完成签到,获得积分10
5秒前
Oneplusssss发布了新的文献求助30
5秒前
gzsy发布了新的文献求助10
5秒前
淳于无施完成签到,获得积分10
5秒前
SMIRTGIRL完成签到,获得积分10
7秒前
胡涂涂完成签到,获得积分10
7秒前
华仔应助江十三采纳,获得10
7秒前
7秒前
8秒前
zixuan发布了新的文献求助10
8秒前
94完成签到,获得积分10
9秒前
10秒前
玉ER发布了新的文献求助10
10秒前
liu完成签到,获得积分10
10秒前
mujin关注了科研通微信公众号
10秒前
11秒前
禾平完成签到,获得积分10
12秒前
13秒前
曲夜白完成签到 ,获得积分10
14秒前
懒羊羊完成签到,获得积分10
14秒前
彭于晏应助zixuan采纳,获得10
14秒前
科研小白完成签到,获得积分10
14秒前
leozhang完成签到,获得积分10
15秒前
15秒前
顾矜应助Gentleman采纳,获得10
15秒前
16秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262300
求助须知:如何正确求助?哪些是违规求助? 2902938
关于积分的说明 8323387
捐赠科研通 2572925
什么是DOI,文献DOI怎么找? 1397983
科研通“疑难数据库(出版商)”最低求助积分说明 653951
邀请新用户注册赠送积分活动 632532