Identifying modifications on DNA-bound histones with joint deep learning of multiple binding sites in DNA sequence

DNA 组蛋白 序列(生物学) 计算生物学 接头(建筑物) DNA测序 DNA结合位点 计算机科学 遗传学 生物 基因 发起人 工程类 基因表达 建筑工程
作者
Yan Li,Lijun Quan,Yongzhao Zhou,Yelu Jiang,Kailong Li,Tingfang Wu,Qiang Lyu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (17): 4070-4077 被引量:2
标识
DOI:10.1093/bioinformatics/btac489
摘要

Histone modifications are epigenetic markers that impact gene expression by altering the chromatin structure or recruiting histone modifiers. Their accurate identification is key to unraveling the mechanisms by which they regulate gene expression. However, the solutions for this task can be improved by exploiting multiple relationships from dataset and exploring designs of learning models, for example jointly learning technology.This article proposes a deep learning-based multi-objective computational approach, iHMnBS, to identify which of the seven typical histone modifications a DNA sequence may choose to bind, and which parts of the DNA sequence bind to them. iHMnBS employs a customized dataset that allows the marking of modifications contained in histones that may bind to any position in the DNA sequence. iHMnBS tries to mine the information implicit in this richer data by means of deep neural networks. In comprehensive comparisons, iHMnBS outperforms a baseline method, and the probability of binding to modified histones assigned to a representative nucleotide of a DNA sequence can serve as a reference for biological experiments. Since the interaction between transcription factors and histone modifications has an important role in gene expression, we extracted a number of sequence patterns that may bind to transcription factors, and explored their possible impact on disease.The source code is available at https://github.com/lennylv/iHMnBS.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郭慧泉发布了新的文献求助10
刚刚
开心的饼干完成签到,获得积分10
1秒前
1秒前
微末完成签到,获得积分10
1秒前
关琦完成签到,获得积分10
2秒前
xyg完成签到,获得积分10
2秒前
Joyj99发布了新的文献求助10
3秒前
3秒前
Good_小鬼完成签到,获得积分10
4秒前
4秒前
沐允贤发布了新的文献求助10
5秒前
David完成签到 ,获得积分10
5秒前
5秒前
铁铁发布了新的文献求助10
5秒前
阿兰完成签到 ,获得积分10
6秒前
Doubility完成签到,获得积分10
6秒前
善良水壶完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助12345采纳,获得10
7秒前
慕青应助佑予和安采纳,获得10
7秒前
9秒前
10秒前
xyg发布了新的文献求助10
10秒前
11秒前
尔尔完成签到,获得积分10
12秒前
DragonT发布了新的文献求助30
13秒前
bigheadear完成签到,获得积分10
13秒前
小肚肚发布了新的文献求助10
14秒前
15秒前
肖文泽完成签到,获得积分20
15秒前
15秒前
彭于晏应助科研通管家采纳,获得20
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
梧桐应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
雪白的冥幽完成签到,获得积分10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023660
求助须知:如何正确求助?哪些是违规求助? 3563646
关于积分的说明 11343307
捐赠科研通 3295026
什么是DOI,文献DOI怎么找? 1814943
邀请新用户注册赠送积分活动 889579
科研通“疑难数据库(出版商)”最低求助积分说明 813023