Machine Learning Prediction Models for Postoperative Stroke in Elderly Patients: Analyses of the MIMIC Database

医学 冲程(发动机) 接收机工作特性 预测建模 曲线下面积 机器学习 内科学 计算机科学 机械工程 工程类
作者
Xiao Zhang,Ningbo Fei,Xinxin Zhang,Qun Wang,Zongping Fang
出处
期刊:Frontiers in Aging Neuroscience [Frontiers Media SA]
卷期号:14 被引量:13
标识
DOI:10.3389/fnagi.2022.897611
摘要

With the aging of populations and the high prevalence of stroke, postoperative stroke has become a growing concern. This study aimed to establish a prediction model and assess the risk factors for stroke in elderly patients during the postoperative period.ML (Machine learning) prediction models were applied to elderly patients from the MIMIC (Medical Information Mart for Intensive Care)-III and MIMIC-VI databases. The SMOTENC (synthetic minority oversampling technique for nominal and continuous data) balancing technique and iterative SVD (Singular Value Decomposition) data imputation method were used to address the problem of category imbalance and missing values, respectively. We analyzed the possible predictive factors of stroke in elderly patients using seven modeling approaches to train the model. The diagnostic value of the model derived from machine learning was evaluated by the ROC curve (receiver operating characteristic curve).We analyzed 7,128 and 661 patients from MIMIC-VI and MIMIC-III, respectively. The XGB (extreme gradient boosting) model got the highest AUC (area under the curve) of 0.78 (0.75-0.81), making it better than the other six models, Besides, we found that XGB model with databalancing was better than that without data balancing. Based on this prediction model, we found hypertension, cancer, congestive heart failure, chronic pulmonary disease and peripheral vascular disease were the top five predictors. Furthermore, we demonstrated that hypertension predicted postoperative stroke is much more valuable.Stroke in elderly patients during the postoperative period can be reliably predicted. We proved XGB model is a reliable predictive model, and the history of hypertension should be weighted more heavily than the results of laboratory tests to prevent postoperative stroke in elderly patients regardless of gender.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wonderting完成签到,获得积分10
刚刚
平常的刺猬完成签到 ,获得积分10
刚刚
77完成签到,获得积分10
1秒前
慕容雅柏发布了新的文献求助10
1秒前
哒哒哒哒完成签到,获得积分10
1秒前
李X完成签到,获得积分10
1秒前
逗逗完成签到,获得积分10
2秒前
nimeng123完成签到 ,获得积分10
2秒前
lilian完成签到,获得积分10
2秒前
2秒前
时光完成签到,获得积分10
2秒前
3秒前
haorui完成签到,获得积分10
3秒前
机智的凡梦完成签到,获得积分10
3秒前
oracl发布了新的文献求助10
4秒前
xin33完成签到,获得积分10
4秒前
舒适静丹完成签到,获得积分10
4秒前
端庄的小蝴蝶完成签到,获得积分10
4秒前
平淡尔琴完成签到,获得积分10
5秒前
无私的发卡完成签到,获得积分10
6秒前
aafrr完成签到 ,获得积分10
6秒前
6秒前
啦啦啦完成签到,获得积分10
6秒前
华仔应助ektyz采纳,获得10
7秒前
Ting完成签到 ,获得积分10
7秒前
7秒前
笨笨乘风完成签到,获得积分10
7秒前
和平发展完成签到,获得积分10
7秒前
7秒前
7秒前
9秒前
留胡子的小虾米完成签到,获得积分10
10秒前
None完成签到,获得积分10
11秒前
小丛雨完成签到,获得积分10
11秒前
深情雅柔完成签到,获得积分10
11秒前
MaSaR应助Ye JL采纳,获得10
12秒前
标致冰海完成签到 ,获得积分10
12秒前
含蓄心锁完成签到,获得积分20
12秒前
ludy发布了新的文献求助30
12秒前
老西瓜完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3510987
求助须知:如何正确求助?哪些是违规求助? 3093692
关于积分的说明 9218660
捐赠科研通 2788179
什么是DOI,文献DOI怎么找? 1530009
邀请新用户注册赠送积分活动 710726
科研通“疑难数据库(出版商)”最低求助积分说明 706329