材料科学
电解质
锌
无机化学
介孔材料
阳极
硫系化合物
化学工程
化学
光电子学
冶金
电极
物理化学
生物化学
工程类
催化作用
作者
Jian Zhi,Siwei Zhao,Min Zhou,Ruiqi Wang,Fuqiang Huang
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-01-27
卷期号:9 (4)
被引量:21
标识
DOI:10.1126/sciadv.ade2217
摘要
A solid-state zinc-ion battery can fundamentally eliminate dendrite formation and hydrogen evolution on the zinc anode from aqueous systems. However, enabling fast zinc ion + conduction in solid crystals is thought to be impossible. Here, we demonstrated a fluorine-doping approach to achieving fast Zn2+ transport in mesoporous ZnyS1-xFx. The substitutional doping of fluoride ion with sulfide substantially reduces Zn2+ migration barrier in a crystalline phase, while mesopore channels with bounded dimethylformamide enable nondestructive Zn2+ conduction along inner pore surface. This mesoporous conductor features a high room-temperature Zn2+ conductivity (0.66 millisiemens per centimeter, compared with 0.01 to 1 millisiemens per centimeter for lithium solid-state electrolyte) with a superior cycling performance (89.5% capacity retention over 5000 cycles) in a solid zinc-ion battery and energy density (0.04 watt-hour per cubic centimeter) in a solid zinc-ion capacitor. The universality of this crystal engineering approach was also verified in other mesoporous zinc chalcogenide materials, which implies various types of potential Zn2+-conducting solid electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI