已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Explainable, interpretable, and trustworthy AI for an intelligent digital twin: A case study on remaining useful life

可解释性 计算机科学 可信赖性 预言 人工智能 审计 机器学习 特征(语言学) 数据挖掘 计算机安全 语言学 哲学 经济 管理
作者
Kazuma Kobayashi,Syed Bahauddin Alam
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:129: 107620-107620 被引量:26
标识
DOI:10.1016/j.engappai.2023.107620
摘要

Artificial intelligence (AI) and Machine learning (ML) are increasingly used for digital twin development in energy and engineering systems, but these models must be fair, unbiased, interpretable, and explainable. It is critical to have confidence in AI's trustworthiness. ML techniques have been useful in predicting important parameters and improving model performance. However, for these AI techniques to be useful in making decisions, they need to be audited, accounted for, and easy to understand. Therefore, the use of explainable AI (XAI) and interpretable machine learning (IML) is crucial for the accurate prediction of prognostics, such as remaining useful life (RUL), in a digital twin system to make it intelligent while ensuring that the AI model is transparent in its decision-making processes and that the predictions it generates can be understood and trusted by users. By using an explainable, interpretable, and trustworthy AI, intelligent digital twin systems can make more accurate predictions of RUL, leading to better maintenance and repair planning and, ultimately, improved system performance. This paper aims to explain the ideas of XAI and IML and justify the important role of AI/ML for the digital twin components, which requires XAI to understand the prediction better. This paper explains the importance and fundamentals of XAI and IML in both local and global aspects in terms of feature selection, model interpretability, and model diagnosis and validation to ensure the reliable use of trustworthy AI/ML applications for RUL prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助雨洋采纳,获得10
1秒前
落榜美术生完成签到 ,获得积分10
2秒前
学术zha发布了新的文献求助30
3秒前
雪山飞鹰发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
4秒前
江河发布了新的文献求助20
5秒前
memory发布了新的文献求助10
10秒前
ning关注了科研通微信公众号
10秒前
天天快乐应助fane采纳,获得30
10秒前
Micheal完成签到 ,获得积分10
12秒前
shweah2003完成签到,获得积分10
12秒前
似水流年完成签到 ,获得积分10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
852发布了新的文献求助20
14秒前
zzz完成签到,获得积分10
16秒前
人1发布了新的文献求助10
16秒前
18秒前
19秒前
resetttttt完成签到 ,获得积分10
19秒前
qilinghe完成签到,获得积分20
20秒前
ning发布了新的文献求助10
22秒前
feng完成签到,获得积分20
22秒前
22秒前
WangShIbei发布了新的文献求助10
23秒前
杜再慧完成签到,获得积分10
23秒前
23秒前
25秒前
ding应助勤劳钧采纳,获得30
25秒前
coco发布了新的文献求助10
25秒前
qilinghe发布了新的文献求助10
27秒前
28秒前
隔壁发布了新的文献求助20
28秒前
机智绿真完成签到,获得积分10
29秒前
珞珈完成签到 ,获得积分10
30秒前
bluebell发布了新的文献求助30
31秒前
32秒前
学术zha完成签到,获得积分10
34秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229401
求助须知:如何正确求助?哪些是违规求助? 2877137
关于积分的说明 8197812
捐赠科研通 2544458
什么是DOI,文献DOI怎么找? 1374396
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749