Blockchain-Based Federated Learning for Securing Internet of Things: A Comprehensive Survey

计算机科学 块链 可扩展性 计算机安全 物联网 多样性(控制论) 分析 数据科学 人工智能 数据库
作者
Wael Issa,Nour Moustafa,Benjamin Turnbull,Nasrin Sohrabi,Zahir Tari
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:55 (9): 1-43 被引量:152
标识
DOI:10.1145/3560816
摘要

The Internet of Things (IoT) ecosystem connects physical devices to the internet, offering significant advantages in agility, responsiveness, and potential environmental benefits. The number and variety of IoT devices are sharply increasing, and as they do, they generate significant data sources. Deep learning (DL) algorithms are increasingly integrated into IoT applications to learn and infer patterns and make intelligent decisions. However, current IoT paradigms rely on centralized storage and computing to operate the DL algorithms. This key central component can potentially cause issues in scalability, security threats, and privacy breaches. Federated learning (FL) has emerged as a new paradigm for DL algorithms to preserve data privacy. Although FL helps reduce privacy leakage by avoiding transferring client data, it still has many challenges related to models’ vulnerabilities and attacks. With the emergence of blockchain and smart contracts, the utilization of these technologies has the potential to safeguard FL across IoT ecosystems. This study aims to review blockchain-based FL methods for securing IoT systems holistically. It presents the current state of research in blockchain, how it can be applied to FL approaches, current IoT security issues, and responses to outline the need to use emerging approaches toward the security and privacy of IoT ecosystems. It also focuses on IoT data analytics from a security perspective and the open research questions. It also provides a thorough literature review of blockchain-based FL approaches for IoT applications. Finally, the challenges and risks associated with integrating blockchain and FL in IoT are discussed to be considered in future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欣慰的海之完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
書生应助小魏哥哥采纳,获得30
3秒前
help3q完成签到,获得积分10
3秒前
皮水儿发布了新的文献求助10
4秒前
帕丁顿发布了新的文献求助10
4秒前
liu完成签到,获得积分20
5秒前
荒天帝石昊完成签到,获得积分10
5秒前
共享精神应助要开心采纳,获得10
6秒前
Sean完成签到,获得积分10
6秒前
zzzzz完成签到,获得积分10
6秒前
7秒前
7秒前
静笃完成签到 ,获得积分10
8秒前
Jase发布了新的文献求助10
9秒前
9秒前
Kawhi完成签到,获得积分10
9秒前
liu发布了新的文献求助10
9秒前
yc完成签到 ,获得积分10
9秒前
Raine发布了新的文献求助10
10秒前
桃花落发布了新的文献求助10
11秒前
帕丁顿完成签到,获得积分10
11秒前
11秒前
QHY发布了新的文献求助10
12秒前
Hello应助wujiwuhui采纳,获得10
12秒前
13秒前
13秒前
13秒前
wjx发布了新的文献求助30
13秒前
桐桐应助幸福大白采纳,获得10
14秒前
gry发布了新的文献求助10
14秒前
pwj发布了新的文献求助10
14秒前
16秒前
柳叶洋完成签到,获得积分10
16秒前
无畏阿玲完成签到,获得积分10
17秒前
18秒前
哒哒哒发布了新的文献求助10
18秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218457
求助须知:如何正确求助?哪些是违规求助? 2867704
关于积分的说明 8157719
捐赠科研通 2534685
什么是DOI,文献DOI怎么找? 1367140
科研通“疑难数据库(出版商)”最低求助积分说明 644934
邀请新用户注册赠送积分活动 618123