Identification of Landslides in Mountainous Area with the Combination of SBAS-InSAR and Yolo Model

山崩 遥感 全球导航卫星系统增强 干涉合成孔径雷达 鉴定(生物学) 全球导航卫星系统应用 环境科学 地质学 地理 合成孔径雷达 计算机科学 地震学 全球定位系统 电信 植物 生物
作者
Haojia Guo,Bangjin Yi,Qianxiang Yao,Yujie Feng,Hui Li,Jixing Sun,Cheng Zhong
出处
期刊:Sensors [MDPI AG]
卷期号:22 (16): 6235-6235 被引量:3
标识
DOI:10.3390/s22166235
摘要

Landslides have been frequently occurring in the high mountainous areas in China and poses serious threats to peoples’ lives and property, economic development, and national security. Detecting and monitoring quiescent or active landslides is important for predicting risks and mitigating losses. However, traditional ground survey methods, such as field investigation, GNSS, and total stations, are only suitable for field investigation at a specific site rather than identifying landslides over a large area, as they are expensive, time-consuming, and laborious. In this study, the feasibility of using SBAS-InSAR to detect landslides in the high mountainous areas along the Yunnan Myanmar border was tested first, with fifty-four IW mode Sentinel-1A ascending scenes from 12 January 2019 to 8 December 2020. Next, the Yolo deep-learning model with Gaofen-2 images captured on 5 December 2020 was tested. Finally, the two techniques were combined to achieve better performance, given each of them has intrinsic limitations on landslide detection. The experiment indicated that the combination could improve the match rate between detection results and references, which implied that the performance of landslide detection can be improved with the fusion of time series SAR images and optical images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
2秒前
rt三角发布了新的文献求助10
2秒前
嘉心糖应助简隋英采纳,获得20
3秒前
3秒前
3秒前
3秒前
ya完成签到,获得积分10
3秒前
董云云发布了新的文献求助10
3秒前
麻辣小龙虾完成签到,获得积分10
4秒前
爱听歌寄云完成签到 ,获得积分10
4秒前
Michael发布了新的文献求助20
4秒前
NexusExplorer应助小毕可乐采纳,获得10
4秒前
zency发布了新的文献求助10
5秒前
dzjin发布了新的文献求助10
5秒前
6秒前
enen发布了新的文献求助10
6秒前
6秒前
杨小野发布了新的文献求助10
6秒前
6秒前
weeklywh发布了新的文献求助10
7秒前
机灵的白羊完成签到 ,获得积分10
7秒前
活泼的莹完成签到,获得积分10
8秒前
天天扫大街完成签到,获得积分10
8秒前
8秒前
9秒前
瞿寒发布了新的文献求助10
9秒前
9秒前
Monicadd完成签到,获得积分10
9秒前
小马同志完成签到,获得积分10
10秒前
小阿俊发布了新的文献求助10
10秒前
韦小艺发布了新的文献求助10
11秒前
爱听歌的依秋完成签到,获得积分10
11秒前
希望天下0贩的0应助成太采纳,获得10
11秒前
yefeng发布了新的文献求助10
11秒前
xx完成签到,获得积分10
12秒前
enen完成签到,获得积分10
12秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648