A deep learning multimodal fusion framework for wood species identification using near-infrared spectroscopy GADF and RGB image

人工智能 RGB颜色模型 模式识别(心理学) 计算机科学 特征提取 卷积神经网络 特征(语言学) 深度学习 鉴定(生物学) 判别式 植物 哲学 语言学 生物
作者
Xi Pan,Zhiming Yu,Zhong Yang
出处
期刊:Holzforschung [De Gruyter]
卷期号:77 (11-12): 816-827 被引量:2
标识
DOI:10.1515/hf-2023-0062
摘要

Abstract Accurate and rapid wood species identification is vital for wood utilization and trade. This goal is achievable with the fast development of deep learning (DL). Several studies have been published related to this topic; however, they were limited by their generalization performance in practical applications. Therefore, this study proposed a DL multimodal fusion framework to bridge this gap. The study utilized a state-of-the-art convolutional neural network (CNN) to simultaneously extract both short-wavelength near-infrared (NIR) spectra and RGB image feature, fully leveraging the advantages of both data types. Using portable devices for collecting spectra and image data enhances the feasibility of onsite rapid identification. In particular, a two-branch CNN framework was developed to extract spectra and image features. For NIR spectra feature extraction, 1 dimensional NIR (1D NIR) spectra were innovatively encoded as 2 dimensional (2D) images using the Gramian angular difference field (GADF) method. This representation enhances better data alignment with CNN operations, facilitating more robust discriminative feature extraction. Moreover, wood’s spectral and image features were fused at the full connection layer for species identification. In the experimental phase conducted on 16 difficult-to-distinguish wood samples from the Lauraceae family, all achieved identification metrics results exceed 99 %. The findings illustrate that the proposed multimodal fusion framework effectively extracts and fully integrates the wood’s features, thereby, improving wood species identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助兰晋彤采纳,获得10
刚刚
CyrusSo524发布了新的文献求助20
2秒前
114514发布了新的文献求助10
2秒前
笑眯眯完成签到,获得积分10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
tianxiong发布了新的文献求助80
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
乐观的雨发布了新的文献求助10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
4秒前
lyy227完成签到,获得积分10
4秒前
英俊的铭应助爱笑秀发采纳,获得10
4秒前
anna1992发布了新的文献求助10
5秒前
兰晋彤完成签到,获得积分10
5秒前
5秒前
清新完成签到,获得积分10
6秒前
alex完成签到,获得积分10
6秒前
7秒前
LZJ完成签到 ,获得积分10
7秒前
杳鸢应助AAApril采纳,获得10
7秒前
泯珉发布了新的文献求助10
9秒前
9秒前
南城发布了新的文献求助10
9秒前
三笠完成签到,获得积分10
10秒前
岁月轮回发布了新的文献求助10
10秒前
中岛悠斗完成签到,获得积分10
10秒前
彼岸花开忆流年完成签到,获得积分20
10秒前
个性的傲安完成签到,获得积分10
11秒前
小坤发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563884
求助须知:如何正确求助?哪些是违规求助? 3137084
关于积分的说明 9421008
捐赠科研通 2837557
什么是DOI,文献DOI怎么找? 1559894
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717195