亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a Consumer Health Vocabulary by Mining Health Forum Texts Based on Word Embedding: Semiautomatic Approach

词汇 健康信息学 计算机科学 受控词汇 领域(数学分析) 词(群论) 卫生专业人员 信息学 自然语言处理 人工智能 医疗保健 语言学 医学 护理部 工程类 公共卫生 政治学 哲学 法学 数学分析 电气工程 数学
作者
Gen Gu,Xingting Zhang,Xingeng Zhu,Zhe Jian,Ken Chen,Dong Wen,Li Gao,Shaodian Zhang,Fei Wang,Handong Ma,Jianbo Lei
出处
期刊:JMIR medical informatics [JMIR Publications Inc.]
卷期号:7 (2): e12704-e12704 被引量:20
标识
DOI:10.2196/12704
摘要

The vocabulary gap between consumers and professionals in the medical domain hinders information seeking and communication. Consumer health vocabularies have been developed to aid such informatics applications. This purpose is best served if the vocabulary evolves with consumers' language.Our objective is to develop a method for identifying and adding new terms to consumer health vocabularies, so that it can keep up with the constantly evolving medical knowledge and language use.In this paper, we propose a consumer health term-finding framework based on a distributed word vector space model. We first learned word vectors from a large-scale text corpus and then adopted a supervised method with existing consumer health vocabularies for learning vector representation of words, which can provide additional supervised fine tuning after unsupervised word embedding learning. With a fine-tuned word vector space, we identified pairs of professional terms and their consumer variants by their semantic distance in the vector space. A subsequent manual review of the extracted and labeled pairs of entities was conducted to validate the results generated by the proposed approach. The results were evaluated using mean reciprocal rank (MRR).Manual evaluation showed that it is feasible to identify alternative medical concepts by using professional or consumer concepts as queries in the word vector space without fine tuning, but the results are more promising in the final fine-tuned word vector space. The MRR values indicated that on an average, a professional or consumer concept is about 14th closest to its counterpart in the word vector space without fine tuning, and the MRR in the final fine-tuned word vector space is 8. Furthermore, the results demonstrate that our method can collect abbreviations and common typos frequently used by consumers.By integrating a large amount of text information and existing consumer health vocabularies, our method outperformed several baseline ranking methods and is effective for generating a list of candidate terms for human review during consumer health vocabulary development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛蛙丶丶完成签到,获得积分10
16秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
23秒前
小马甲应助科研通管家采纳,获得10
28秒前
Rewi_Zhang完成签到,获得积分10
40秒前
干破天完成签到 ,获得积分10
47秒前
1分钟前
辉辉发布了新的文献求助10
1分钟前
ymr完成签到,获得积分10
1分钟前
1分钟前
10发布了新的文献求助10
1分钟前
科研搬运工完成签到,获得积分10
1分钟前
1分钟前
sangsang应助艺玲采纳,获得10
1分钟前
Hayden_peng完成签到,获得积分10
1分钟前
Hayden_peng发布了新的文献求助10
2分钟前
微风打了烊完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
1粒发布了新的文献求助10
2分钟前
陈陈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
1粒关注了科研通微信公众号
2分钟前
桐桐应助yangon采纳,获得10
3分钟前
哭泣的幻翠完成签到 ,获得积分10
3分钟前
3分钟前
yangon发布了新的文献求助10
3分钟前
3分钟前
4分钟前
白华苍松发布了新的文献求助20
4分钟前
4分钟前
郗妫完成签到,获得积分10
4分钟前
小马甲应助科研通管家采纳,获得30
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
斑鸠津发布了新的文献求助10
4分钟前
4分钟前
笨笨的完成签到,获得积分20
4分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154858
求助须知:如何正确求助?哪些是违规求助? 2805666
关于积分的说明 7865599
捐赠科研通 2463838
什么是DOI,文献DOI怎么找? 1311626
科研通“疑难数据库(出版商)”最低求助积分说明 629654
版权声明 601832