插层(化学)
材料科学
微观结构
电致变色
晶体结构
结晶学
纳米技术
电极
化学
无机化学
冶金
物理化学
作者
Ananya Renuka Balakrishna
摘要
Abstract Intercalation materials are promising candidates for reversible energy storage and are, for example, used as lithium-battery electrodes, hydrogen-storage compounds, and electrochromic materials. An important issue preventing the more widespread use of these materials is that they undergo structural transformations (of up to ∼10% lattice strains) during intercalation, which expand the material, nucleate microcracks, and, ultimately, lead to material failure. Besides the structural transformation of lattices, the crystallographic texture of the intercalation material plays a key role in governing ion-transport properties, generating phase separation microstructures, and elastically interacting with crystal defects. In this review, I provide an overview of how the structural transformation of lattices, phase transformation microstructures, and crystallographic defects affect the chemo-mechanical properties of intercalation materials. In each section, I identify the key challenges and opportunities to crystallographically design intercalation compounds to improve their properties and lifespans. I predominantly cite examples from the literature of intercalation cathodes used in rechargeable batteries, however, the identified challenges and opportunities are transferable to a broader range of intercalation compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI