Machine learning‐based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy

医学 心脏再同步化治疗 内科学 心脏病学 心力衰竭 危险系数 射血分数 QRS波群 植入式心律转复除颤器 置信区间
作者
Maja Čikeš,Sergio Sanchez-Martinez,Brian Claggett,Nicolás Duchateau,Gemma Piella,Constantine Butakoff,Anne‐Catherine Pouleur,Dorit Knappe,Tor Biering‐Sørensen,Valentina Kutyifa,Arthur J. Moss,Kenneth M. Steín,Scott D. Solomon,Bart Bijnens
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:21 (1): 74-85 被引量:202
标识
DOI:10.1002/ejhf.1333
摘要

We tested the hypothesis that a machine learning (ML) algorithm utilizing both complex echocardiographic data and clinical parameters could be used to phenogroup a heart failure (HF) cohort and identify patients with beneficial response to cardiac resynchronization therapy (CRT).We studied 1106 HF patients from the Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy (MADIT-CRT) (left ventricular ejection fraction ≤ 30%, QRS ≥ 130 ms, New York Heart Association class ≤ II) randomized to CRT with a defibrillator (CRT-D, n = 677) or an implantable cardioverter defibrillator (ICD, n = 429). An unsupervised ML algorithm (Multiple Kernel Learning and K-means clustering) was used to categorize subjects by similarities in clinical parameters, and left ventricular volume and deformation traces at baseline into mutually exclusive groups. The treatment effect of CRT-D on the primary outcome (all-cause death or HF event) and on volume response was compared among these groups. Our analysis identified four phenogroups, significantly different in the majority of baseline clinical characteristics, biomarker values, measures of left and right ventricular structure and function and the primary outcome occurrence. Two phenogroups included a higher proportion of known clinical characteristics predictive of CRT response, and were associated with a substantially better treatment effect of CRT-D on the primary outcome [hazard ratio (HR) 0.35; 95% confidence interval (CI) 0.19-0.64; P = 0.0005 and HR 0.36; 95% CI 0.19-0.68; P = 0.001] than observed in the other groups (interaction P = 0.02).Our results serve as a proof-of-concept that, by integrating clinical parameters and full heart cycle imaging data, unsupervised ML can provide a clinically meaningful classification of a phenotypically heterogeneous HF cohort and might aid in optimizing the rate of responders to specific therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luckyz发布了新的文献求助10
1秒前
勤奋的灯完成签到 ,获得积分10
1秒前
阿巴阿巴发布了新的文献求助10
2秒前
PGHQ发布了新的文献求助30
2秒前
研友_VZG7GZ应助xinyuli采纳,获得10
2秒前
小马甲应助ljfarm采纳,获得10
2秒前
想瘦的海豹完成签到,获得积分20
2秒前
xy820完成签到,获得积分10
3秒前
访烟完成签到,获得积分20
3秒前
4秒前
贪玩的甜瓜完成签到,获得积分10
4秒前
完美世界应助唐破茧采纳,获得30
4秒前
5秒前
许文强发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
华老五完成签到,获得积分10
8秒前
元神完成签到 ,获得积分10
8秒前
哦豁应助发发采纳,获得20
8秒前
CodeCraft应助PGHQ采纳,获得10
8秒前
qhy123发布了新的文献求助10
9秒前
whutzxy完成签到,获得积分10
9秒前
10秒前
陈军应助单薄店员采纳,获得20
10秒前
桐桐应助mmol采纳,获得10
11秒前
123asd完成签到,获得积分10
11秒前
DukeTao发布了新的文献求助10
12秒前
Jane完成签到,获得积分10
12秒前
Li发布了新的文献求助30
12秒前
12秒前
www完成签到,获得积分10
13秒前
NexusExplorer应助酷炫无敌采纳,获得10
13秒前
14秒前
noah发布了新的文献求助10
16秒前
16秒前
HEIKU应助www采纳,获得10
16秒前
希望天下0贩的0应助iufan采纳,获得10
17秒前
18秒前
深情世立完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825