Post-Consumer Textile Waste Classification through Near-Infrared Spectroscopy, Using an Advanced Deep Learning Approach

织物 纺织工业 工艺工程 计算机科学 卷积神经网络 质量(理念) 二元分类 原材料 纤维 持续性 环境科学 人工智能 生化工程 材料科学 制造工程 制浆造纸工业 模式识别(心理学) 工程类 复合材料 支持向量机 化学 生态学 哲学 考古 认识论 有机化学 生物 历史
作者
Jordi‐Roger Riba Ruiz,Rosa Cantero,Pol Riba-Mosoll,Rita Puig
出处
期刊:Polymers [MDPI AG]
卷期号:14 (12): 2475-2475 被引量:12
标识
DOI:10.3390/polym14122475
摘要

The textile industry is generating great environmental concerns due to the exponential growth of textile products' consumption (fast fashion) and production. The textile value chain today operates as a linear system (textile products are produced, used, and discarded), thus putting pressure on resources and creating negative environmental impacts. A new textile economy based on the principles of circular economy is needed for a more sustainable textile industry. To help meet this challenge, an efficient collection, classification, and recycling system needs to be implemented at the end-of-life stage of textile products, so as to obtain high-quality recycled materials able to be reused in high-value products. This paper contributes to the classification of post-consumer textile waste by proposing an automatic classification method able to be trained to separate higher-quality textile fiber flows. Our proposal is the use of near-infrared (NIR) spectroscopy combined with a mathematical treatment of the spectra by convolutional neural networks (CNNs) to classify and separate 100% pure samples and binary mixtures of the most common textile fibers. CNN is applied for the first time to the classification of textile samples. A total of 370 textile samples were studied-50% used for calibration and 50% for prediction purposes. The results obtained are very promising (100% correct classification for pure fibers and 90-100% for binary mixtures), showing that the proposed methodology is very powerful, able to be trained for the specific separation of flows, and compatible with the automation of the system at an industrial scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无名老大应助刻苦问凝采纳,获得30
1秒前
思源应助xixixixix采纳,获得10
1秒前
3秒前
淡淡的小蘑菇完成签到 ,获得积分10
4秒前
学术废物发布了新的文献求助10
4秒前
归尘发布了新的文献求助20
9秒前
慢歌完成签到 ,获得积分10
9秒前
Gheros完成签到,获得积分20
10秒前
11秒前
领导范儿应助李静采纳,获得10
11秒前
12秒前
12秒前
科目三应助7907采纳,获得10
13秒前
16秒前
liu完成签到,获得积分10
17秒前
19秒前
阿巴阿巴发布了新的文献求助10
21秒前
23秒前
xh完成签到,获得积分20
24秒前
24秒前
Giny发布了新的文献求助10
24秒前
ZZ完成签到 ,获得积分10
26秒前
dada发布了新的文献求助10
28秒前
28秒前
mxq发布了新的文献求助10
29秒前
liourg发布了新的文献求助10
30秒前
Ava应助爱撒娇的书翠采纳,获得10
34秒前
CKJ发布了新的文献求助10
37秒前
sissiarno应助炙热柚子采纳,获得200
39秒前
40秒前
陈吉止完成签到,获得积分10
41秒前
ugk发布了新的文献求助10
44秒前
44秒前
45秒前
无花果应助陈吉止采纳,获得10
45秒前
卞仁吉发布了新的文献求助10
50秒前
爆米花应助科研通管家采纳,获得10
51秒前
ceeray23应助科研通管家采纳,获得10
51秒前
上官若男应助科研通管家采纳,获得10
51秒前
酷波er应助科研通管家采纳,获得10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465478
求助须知:如何正确求助?哪些是违规求助? 3058648
关于积分的说明 9062429
捐赠科研通 2748998
什么是DOI,文献DOI怎么找? 1508231
科研通“疑难数据库(出版商)”最低求助积分说明 696880
邀请新用户注册赠送积分活动 696535