Machine learning in the prediction of postpartum depression: A review

概化理论 机器学习 背景(考古学) 人工智能 人口 鉴定(生物学) 医学 萧条(经济学) 产后抑郁症 特征选择 计算机科学 心理学 发展心理学 生物 环境卫生 植物 宏观经济学 古生物学 遗传学 经济 怀孕
作者
Paolo Cellini,Alessandro Pigoni,Giuseppe Delvecchio,Chiara Moltrasio,Paolo Brambilla
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:309: 350-357 被引量:29
标识
DOI:10.1016/j.jad.2022.04.093
摘要

Current screening options in the setting of postpartum depression (PPD) are firmly rooted in self-report symptom-based tools. The implementation of the modern machine learning (ML) approaches might, in this context, represent a way to refine patient screening by precisely identifying possible PPD predictors and, subsequently, a population at risk of developing the disease, in an effort to lower its morbidity, mortality and its economic burden. We performed a bibliographic search on PubMed and Embase looking for studies aimed at the identification of PPD predictors using ML techniques. Among the 482 articles retrieved, 11 met the inclusion criteria. The most used algorithm was the support vector machine. Notably, all studies reached an area under the curve above 0.7, ultimately suggesting that the prediction of PPD could be feasible. Variables obtained from sociodemographic and clinical aspects (psychiatric and gynecological factors) seem to be the most reliable. Only three studies employed biological variables, in the form of blood, genetic and epigenetic predictors, while no study employed imaging techniques. The literature on PPD prediction via ML techniques is currently scarce, with most studies employing different variables selection and ML algorithms, ultimately reducing the generalizability of the results. The identification of a population at risk of developing PPD might be feasible with current technology and clinical knowledge. Further studies are necessary to clarify how such an approach could be implemented into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loong发布了新的文献求助10
刚刚
Blue发布了新的文献求助10
1秒前
失眠的夜梦完成签到,获得积分10
3秒前
谓风完成签到,获得积分10
4秒前
恋雅颖月应助乐观的寻绿采纳,获得10
4秒前
Shrine完成签到,获得积分10
4秒前
英姑应助紫色奶萨采纳,获得10
6秒前
7秒前
8秒前
希望天下0贩的0应助Jay采纳,获得10
9秒前
9秒前
爆米花应助zewangguo采纳,获得10
10秒前
斯文败类应助loong采纳,获得10
11秒前
深情安青应助Xin采纳,获得10
12秒前
和花花发布了新的文献求助10
12秒前
摩卡完成签到,获得积分10
13秒前
14秒前
15秒前
端庄毛巾完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
张雯思发布了新的文献求助10
18秒前
ding应助Nugget采纳,获得10
18秒前
幸福大白发布了新的文献求助30
21秒前
wdy111举报ZZZ求助涉嫌违规
22秒前
zewangguo发布了新的文献求助10
22秒前
23秒前
高大的冰双完成签到,获得积分10
24秒前
26秒前
987完成签到 ,获得积分10
27秒前
loong完成签到,获得积分10
27秒前
紫色奶萨发布了新的文献求助10
28秒前
zewangguo完成签到,获得积分10
28秒前
29秒前
如意手链完成签到,获得积分10
30秒前
DongWei95发布了新的文献求助30
31秒前
锦诗完成签到,获得积分10
32秒前
isojso发布了新的文献求助10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174