Machine learning in the prediction of postpartum depression: A review

概化理论 机器学习 背景(考古学) 人工智能 人口 鉴定(生物学) 医学 萧条(经济学) 产后抑郁症 特征选择 计算机科学 心理学 发展心理学 生物 环境卫生 植物 宏观经济学 古生物学 遗传学 经济 怀孕
作者
Paolo Cellini,Alessandro Pigoni,Giuseppe Delvecchio,Chiara Moltrasio,Paolo Brambilla
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:309: 350-357 被引量:29
标识
DOI:10.1016/j.jad.2022.04.093
摘要

Current screening options in the setting of postpartum depression (PPD) are firmly rooted in self-report symptom-based tools. The implementation of the modern machine learning (ML) approaches might, in this context, represent a way to refine patient screening by precisely identifying possible PPD predictors and, subsequently, a population at risk of developing the disease, in an effort to lower its morbidity, mortality and its economic burden. We performed a bibliographic search on PubMed and Embase looking for studies aimed at the identification of PPD predictors using ML techniques. Among the 482 articles retrieved, 11 met the inclusion criteria. The most used algorithm was the support vector machine. Notably, all studies reached an area under the curve above 0.7, ultimately suggesting that the prediction of PPD could be feasible. Variables obtained from sociodemographic and clinical aspects (psychiatric and gynecological factors) seem to be the most reliable. Only three studies employed biological variables, in the form of blood, genetic and epigenetic predictors, while no study employed imaging techniques. The literature on PPD prediction via ML techniques is currently scarce, with most studies employing different variables selection and ML algorithms, ultimately reducing the generalizability of the results. The identification of a population at risk of developing PPD might be feasible with current technology and clinical knowledge. Further studies are necessary to clarify how such an approach could be implemented into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抹茶肥肠完成签到,获得积分10
2秒前
脑洞疼应助11采纳,获得10
2秒前
2秒前
4秒前
sheila完成签到,获得积分10
4秒前
4秒前
枫叶的虫子完成签到,获得积分10
5秒前
5秒前
Pooh发布了新的文献求助10
6秒前
6秒前
7秒前
深情安青应助莫非采纳,获得10
8秒前
向阳而生o完成签到,获得积分10
8秒前
xxx发布了新的文献求助10
8秒前
9秒前
llll发布了新的文献求助10
10秒前
yao发布了新的文献求助30
10秒前
11秒前
loski发布了新的文献求助10
11秒前
可爱的函函应助偷乐采纳,获得10
13秒前
清晾油完成签到,获得积分10
13秒前
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
解语花应助科研通管家采纳,获得50
14秒前
czh应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
坦率的匪应助科研通管家采纳,获得10
14秒前
ludov应助科研通管家采纳,获得10
14秒前
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
坦率的匪应助科研通管家采纳,获得10
15秒前
11完成签到,获得积分20
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028