Machine learning in the prediction of postpartum depression: A review

概化理论 机器学习 背景(考古学) 人工智能 人口 鉴定(生物学) 医学 萧条(经济学) 产后抑郁症 特征选择 计算机科学 心理学 发展心理学 遗传学 怀孕 经济 古生物学 宏观经济学 环境卫生 生物 植物
作者
Paolo Cellini,Alessandro Pigoni,Giuseppe Delvecchio,Chiara Moltrasio,Paolo Brambilla
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:309: 350-357 被引量:47
标识
DOI:10.1016/j.jad.2022.04.093
摘要

Current screening options in the setting of postpartum depression (PPD) are firmly rooted in self-report symptom-based tools. The implementation of the modern machine learning (ML) approaches might, in this context, represent a way to refine patient screening by precisely identifying possible PPD predictors and, subsequently, a population at risk of developing the disease, in an effort to lower its morbidity, mortality and its economic burden. We performed a bibliographic search on PubMed and Embase looking for studies aimed at the identification of PPD predictors using ML techniques. Among the 482 articles retrieved, 11 met the inclusion criteria. The most used algorithm was the support vector machine. Notably, all studies reached an area under the curve above 0.7, ultimately suggesting that the prediction of PPD could be feasible. Variables obtained from sociodemographic and clinical aspects (psychiatric and gynecological factors) seem to be the most reliable. Only three studies employed biological variables, in the form of blood, genetic and epigenetic predictors, while no study employed imaging techniques. The literature on PPD prediction via ML techniques is currently scarce, with most studies employing different variables selection and ML algorithms, ultimately reducing the generalizability of the results. The identification of a population at risk of developing PPD might be feasible with current technology and clinical knowledge. Further studies are necessary to clarify how such an approach could be implemented into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小乐比发布了新的文献求助10
刚刚
刚刚
NexusExplorer应助刘天宇采纳,获得10
1秒前
科研通AI2S应助zhang采纳,获得10
1秒前
科研通AI6应助千寻采纳,获得10
2秒前
2秒前
李健的小迷弟应助111采纳,获得10
2秒前
4秒前
___完成签到 ,获得积分10
4秒前
所所应助搬砖汉斯采纳,获得10
4秒前
ww完成签到,获得积分10
4秒前
6秒前
打打应助Zhorty采纳,获得10
8秒前
9秒前
10秒前
10秒前
可爱的函函应助蓝天采纳,获得10
11秒前
13秒前
Frank应助旷野采纳,获得10
14秒前
lili完成签到 ,获得积分10
14秒前
刘天宇发布了新的文献求助10
15秒前
15秒前
16秒前
瞿霞完成签到 ,获得积分10
16秒前
18秒前
尤寄风发布了新的文献求助10
18秒前
郑亚铎发布了新的文献求助10
19秒前
慕青应助cs采纳,获得10
19秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
19秒前
20秒前
20秒前
秦罗敷应助科研通管家采纳,获得10
21秒前
田様应助科研通管家采纳,获得10
21秒前
元昭诩应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
寻道图强应助科研通管家采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563112
求助须知:如何正确求助?哪些是违规求助? 4647939
关于积分的说明 14683211
捐赠科研通 4590061
什么是DOI,文献DOI怎么找? 2518253
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318