Machine learning in the prediction of postpartum depression: A review

概化理论 机器学习 背景(考古学) 人工智能 人口 鉴定(生物学) 医学 萧条(经济学) 产后抑郁症 特征选择 计算机科学 心理学 发展心理学 生物 环境卫生 植物 宏观经济学 古生物学 遗传学 经济 怀孕
作者
Paolo Cellini,Alessandro Pigoni,Giuseppe Delvecchio,Chiara Moltrasio,Paolo Brambilla
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:309: 350-357 被引量:47
标识
DOI:10.1016/j.jad.2022.04.093
摘要

Current screening options in the setting of postpartum depression (PPD) are firmly rooted in self-report symptom-based tools. The implementation of the modern machine learning (ML) approaches might, in this context, represent a way to refine patient screening by precisely identifying possible PPD predictors and, subsequently, a population at risk of developing the disease, in an effort to lower its morbidity, mortality and its economic burden. We performed a bibliographic search on PubMed and Embase looking for studies aimed at the identification of PPD predictors using ML techniques. Among the 482 articles retrieved, 11 met the inclusion criteria. The most used algorithm was the support vector machine. Notably, all studies reached an area under the curve above 0.7, ultimately suggesting that the prediction of PPD could be feasible. Variables obtained from sociodemographic and clinical aspects (psychiatric and gynecological factors) seem to be the most reliable. Only three studies employed biological variables, in the form of blood, genetic and epigenetic predictors, while no study employed imaging techniques. The literature on PPD prediction via ML techniques is currently scarce, with most studies employing different variables selection and ML algorithms, ultimately reducing the generalizability of the results. The identification of a population at risk of developing PPD might be feasible with current technology and clinical knowledge. Further studies are necessary to clarify how such an approach could be implemented into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wh发布了新的文献求助100
刚刚
winklove完成签到,获得积分10
刚刚
刚刚
le完成签到,获得积分20
刚刚
瘦瘦的艳发布了新的文献求助10
1秒前
怪蜀黍发布了新的文献求助10
1秒前
1238125446发布了新的文献求助10
1秒前
814791097完成签到,获得积分10
3秒前
3秒前
ding应助言宴采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
ljyzz发布了新的文献求助10
5秒前
保持淡定发布了新的文献求助10
5秒前
LLLLLJJXX发布了新的文献求助10
7秒前
8秒前
9秒前
liuchang发布了新的文献求助10
9秒前
Ava应助刘婧采纳,获得10
11秒前
demo完成签到,获得积分10
13秒前
13秒前
周颂扬发布了新的文献求助10
13秒前
李爱国应助小鲤鱼本鱼采纳,获得10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
Noah完成签到 ,获得积分0
15秒前
15秒前
Zx_1993应助cellulose采纳,获得20
16秒前
999eichyy完成签到,获得积分10
16秒前
16秒前
saf0852完成签到,获得积分10
17秒前
17秒前
查希尔完成签到 ,获得积分10
17秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114