清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MFF‐DenseNet: Densely Connected Convolutional Network With Multi‐Scale Feature Fusion for Magnetotelluric Noise Suppression

卷积神经网络 计算机科学 特征(语言学) 噪音(视频) 比例(比率) 模式识别(心理学) 人工智能 大地电磁法 工程类 地理 地图学 电气工程 图像(数学) 语言学 电阻率和电导率 哲学
作者
Jiayu Wang,Jin Li,Hui Zhou,Xiaolin Zhao,Jingtian Tang
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:129 (9)
标识
DOI:10.1029/2024jb028869
摘要

Abstract Magnetotelluric (MT) is a geophysical technique for detecting subsurface electrical structures. However, MT data collected in areas with frequent human activity often encounter various types of electromagnetic (EM) noise, which can mask or distort the signals we aim to analyze. Over the past decades, data processing methods based on deep learning has become the focus of multiple disciplines. Training neural networks to identify and handle noise has been proven effective in reducing the impact of noise. Therefore, ensuring the neural network accurately learns the noise and signal characteristics during the training is crucial. Against this background, we propose a multi‐scale feature fusion technique based on the densely connected network and apply it to processing MT data. First, we construct a data set resembling the noise in field data and use it to train the network. Leveraging dense connections, we extract feature maps of EM noise from noisy data and utilize Spatial Pyramid Pooling to integrate feature maps of various scales, enabling the network to capture features of the noise precisely. At the same time, we reduce the computation of feature fusion by introducing the Channel‐wise Squeezed Layer to compress the channels of the feature maps. Ultimately, we apply the trained model to the field noisy data. The results of synthetic and field data demonstrate that our method suppresses low‐amplitude and continuous high‐amplitude noise while preserving low‐frequency valuable signal. Apparent resistivity‐phase curves and polarization direction shows a noticeable improvement in the mid and low‐frequency bands with our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Sinner采纳,获得10
3秒前
lilaccalla完成签到 ,获得积分10
13秒前
23秒前
lanxinge完成签到 ,获得积分10
40秒前
51秒前
51秒前
1分钟前
Sinner发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
xhcccc发布了新的文献求助20
1分钟前
SciGPT应助跳跃的代曼采纳,获得10
1分钟前
Yolo完成签到 ,获得积分10
1分钟前
1分钟前
跳跃的代曼完成签到,获得积分10
1分钟前
2分钟前
xhcccc完成签到,获得积分10
2分钟前
白天亮完成签到,获得积分10
2分钟前
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
爆米花应助bju采纳,获得10
4分钟前
4分钟前
TOUHOUU完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
领导范儿应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
沐浠完成签到 ,获得积分10
6分钟前
葛力完成签到,获得积分20
6分钟前
科研通AI2S应助葛力采纳,获得10
7分钟前
7分钟前
宇文非笑完成签到 ,获得积分0
7分钟前
科研通AI5应助laodai8855采纳,获得20
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513318
关于积分的说明 11167279
捐赠科研通 3248691
什么是DOI,文献DOI怎么找? 1794414
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804652