MFF‐DenseNet: Densely Connected Convolutional Network With Multi‐Scale Feature Fusion for Magnetotelluric Noise Suppression

卷积神经网络 计算机科学 特征(语言学) 噪音(视频) 比例(比率) 模式识别(心理学) 人工智能 大地电磁法 工程类 地理 地图学 电气工程 图像(数学) 哲学 语言学 电阻率和电导率
作者
Jiayu Wang,Jin Li,Hui Zhou,Xiaolin Zhao,Jingtian Tang
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:129 (9)
标识
DOI:10.1029/2024jb028869
摘要

Abstract Magnetotelluric (MT) is a geophysical technique for detecting subsurface electrical structures. However, MT data collected in areas with frequent human activity often encounter various types of electromagnetic (EM) noise, which can mask or distort the signals we aim to analyze. Over the past decades, data processing methods based on deep learning has become the focus of multiple disciplines. Training neural networks to identify and handle noise has been proven effective in reducing the impact of noise. Therefore, ensuring the neural network accurately learns the noise and signal characteristics during the training is crucial. Against this background, we propose a multi‐scale feature fusion technique based on the densely connected network and apply it to processing MT data. First, we construct a data set resembling the noise in field data and use it to train the network. Leveraging dense connections, we extract feature maps of EM noise from noisy data and utilize Spatial Pyramid Pooling to integrate feature maps of various scales, enabling the network to capture features of the noise precisely. At the same time, we reduce the computation of feature fusion by introducing the Channel‐wise Squeezed Layer to compress the channels of the feature maps. Ultimately, we apply the trained model to the field noisy data. The results of synthetic and field data demonstrate that our method suppresses low‐amplitude and continuous high‐amplitude noise while preserving low‐frequency valuable signal. Apparent resistivity‐phase curves and polarization direction shows a noticeable improvement in the mid and low‐frequency bands with our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张时婕完成签到 ,获得积分10
1秒前
2秒前
奋斗VS完成签到,获得积分20
6秒前
隐形曼青应助psj采纳,获得10
6秒前
酷炫的毛巾应助ewk采纳,获得10
6秒前
8秒前
Jeremy完成签到,获得积分10
8秒前
8秒前
一笑倾城发布了新的文献求助20
10秒前
zty发布了新的文献求助10
10秒前
完美世界应助落榜美术生采纳,获得10
11秒前
余南发布了新的文献求助10
11秒前
11秒前
Tying关注了科研通微信公众号
12秒前
虚幻秋天发布了新的文献求助10
12秒前
无铭发布了新的文献求助10
13秒前
13秒前
14秒前
16秒前
hqwar3发布了新的文献求助200
16秒前
17秒前
田様应助zhongyi采纳,获得10
17秒前
18秒前
SciGPT应助276860采纳,获得10
19秒前
我亦化身东海去完成签到 ,获得积分10
19秒前
FashionBoy应助细心的梦芝采纳,获得10
19秒前
21秒前
hyhyhyhy发布了新的文献求助10
21秒前
21秒前
云朵发布了新的文献求助10
22秒前
22秒前
林茉茉茉茉莉完成签到,获得积分10
23秒前
23秒前
psj发布了新的文献求助10
23秒前
lawrencewong发布了新的文献求助20
24秒前
大个应助飘逸问兰采纳,获得10
24秒前
副本完成签到 ,获得积分10
24秒前
丰知然应助苏su采纳,获得10
24秒前
落榜美术生完成签到,获得积分10
25秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943193
关于积分的说明 8512994
捐赠科研通 2618403
什么是DOI,文献DOI怎么找? 1431061
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649540