Landslide displacement forecasting using deep learning and monitoring data across selected sites

山崩 人工智能 流离失所(心理学) 计算机科学 预警系统 背景(考古学) 深度学习 卷积神经网络 机器学习 预警系统 人工神经网络 自然灾害 地质学 地理 气象学 岩土工程 电信 古生物学 心理治疗师 心理学
作者
Lorenzo Nava,Edoardo Carraro,Cristina Reyes‐Carmona,Silvia Puliero,Kushanav Bhuyan,Ascanio Rosi,Oriol Monserrat,Mario Floris,Sansar Raj Meena,Jorge Pedro Galvé,Filippo Catani
出处
期刊:Landslides [Springer Science+Business Media]
卷期号:20 (10): 2111-2129 被引量:66
标识
DOI:10.1007/s10346-023-02104-9
摘要

Abstract Accurate early warning systems for landslides are a reliable risk-reduction strategy that may significantly reduce fatalities and economic losses. Several machine learning methods have been examined for this purpose, underlying deep learning (DL) models’ remarkable prediction capabilities. The long short-term memory (LSTM) and gated recurrent unit (GRU) algorithms are the sole DL model studied in the extant comparisons. However, several other DL algorithms are suitable for time series forecasting tasks. In this paper, we assess, compare, and describe seven DL methods for forecasting future landslide displacement: multi-layer perception (MLP), LSTM, GRU, 1D convolutional neural network (1D CNN), 2xLSTM, bidirectional LSTM (bi-LSTM), and an architecture composed of 1D CNN and LSTM (Conv-LSTM). The investigation focuses on four landslides with different geographic locations, geological settings, time step dimensions, and measurement instruments. Two landslides are located in an artificial reservoir context, while the displacement of the other two is influenced just by rainfall. The results reveal that the MLP, GRU, and LSTM models can make reliable predictions in all four scenarios, while the Conv-LSTM model outperforms the others in the Baishuihe landslide, where the landslide is highly seasonal. No evident performance differences were found for landslides inside artificial reservoirs rather than outside. Furthermore, the research shows that MLP is better adapted to forecast the highest displacement peaks, while LSTM and GRU are better suited to model lower displacement peaks. We believe the findings of this research will serve as a precious aid when implementing a DL-based landslide early warning system (LEWS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gu发布了新的文献求助10
2秒前
3秒前
萌新完成签到 ,获得积分10
4秒前
能干的熊猫完成签到,获得积分20
5秒前
小稻草人发布了新的文献求助10
7秒前
QianchengZhao应助枯藤老柳树采纳,获得10
7秒前
9秒前
9秒前
芜湖发布了新的文献求助10
9秒前
怡萱发布了新的文献求助20
9秒前
霜降完成签到 ,获得积分10
11秒前
丰富的宛亦完成签到 ,获得积分10
12秒前
14秒前
15秒前
hh完成签到,获得积分10
15秒前
某宁发布了新的文献求助10
16秒前
番茄完成签到 ,获得积分10
16秒前
20秒前
科研通AI5应助卡农采纳,获得30
22秒前
25秒前
SciGPT应助mgl采纳,获得10
25秒前
科研通AI5应助柒月小鱼采纳,获得10
25秒前
所所应助ywj采纳,获得10
25秒前
神宝宝完成签到,获得积分10
26秒前
木瑾完成签到 ,获得积分10
27秒前
27秒前
YC完成签到,获得积分10
29秒前
风往北吹发布了新的文献求助10
30秒前
彭于晏应助Dieubium采纳,获得10
31秒前
玉面手雷王完成签到,获得积分20
32秒前
QianchengZhao应助枯藤老柳树采纳,获得10
32秒前
33秒前
34秒前
35秒前
科研通AI5应助纯真寄云采纳,获得10
37秒前
38秒前
mgl发布了新的文献求助10
38秒前
38秒前
42秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673473
求助须知:如何正确求助?哪些是违规求助? 3229115
关于积分的说明 9784201
捐赠科研通 2939724
什么是DOI,文献DOI怎么找? 1611239
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290