Robust remote sensing retrieval of key eutrophication indicators in coastal waters based on explainable machine learning

梯度升压 可解释性 富营养化 环境科学 随机森林 遥感 计算机科学 Boosting(机器学习) 化学需氧量 卫星 决策树 营养物 机器学习 生态学 地理 生物 环境工程 航空航天工程 废水 工程类
作者
Liudi Zhu,Tingwei Cui,A Runa,Xinliang Pan,Wenjing Zhao,Jinzhao Xiang,Mengmeng Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 262-280 被引量:3
标识
DOI:10.1016/j.isprsjprs.2024.04.007
摘要

Excessive discharges of nitrogen and phosphorus nutrients lead to eutrophication in coastal waters. Optical remote sensing retrieval of the key eutrophication indicators, namely dissolved inorganic nitrogen concentration (DIN), soluble reactive phosphate concentration (SRP), and chemical oxygen demand (COD), remains challenging due to lack of distinct spectral features. Although machine learning (ML) has shown the potential, the retrieval accuracy is limited, and the interpretability is insufficient in terms of the black-box characteristics. To address these limitations, based on robust and explainable ML algorithms, we constructed models for retrieving DIN, SRP, and COD over coastal waters of Northern South China Sea (NSCS), which is experiencing prominent eutrophication. Retrieval models based on classification and regression trees (CART) ML algorithms were developed using 4038 groups of in situ observations and quasi-synchronous satellite images. A comparison of CART algorithms, including Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting (XGBoost), indicated the highest retrieval accuracy of XGBoost for DIN (R2 = 0.88, MRE = 24.39 %), SRP (R2 = 0.92, MRE = 33.27 %), and COD (R2 = 0.75, MRE = 18.58 %) for validation dataset. On the basis of spectral remote sensing reflectance, further inputs of ocean physio-chemical properties, spatio-temporal information, and inherent optical properties may reduce retrieval errors by 30.16 %, 19.85 %, and 3.95 %, respectively, and their combined use reduced errors by 54.71 %. Besides, explainable ML analysis characterized the contribution of input features and enhanced the transparency of ML black-box models. Based on the proposed models, 27,278 satellite images and spatio-temporal reconstruction method, 1-km resolution gap-free daily DIN, SRP, and COD products were constructed from 2002 to 2022 for the coastal waters of NSCS. Under the influence of urbanization and river discharge, nitrogen and phosphorus concentrations in this area were found to have increased by 6.09 % and 11.04 %, respectively, over the past 21 years, with the fastest rise in the Pearl River Estuary, where the eutrophic water area had shown an increase rate of approximately 112.66 km2/yr. The proposed robust and explainable ML retrieval models may support ocean environment management and water quality monitoring by providing key eutrophication indicators products over coastal waters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厚礼蟹发布了新的文献求助10
刚刚
阳光的紫丝完成签到 ,获得积分10
刚刚
1秒前
琦琦完成签到,获得积分20
1秒前
1秒前
zhouzhou打工人完成签到,获得积分10
2秒前
科研通AI5应助Woo_SH采纳,获得10
3秒前
阿跑发布了新的文献求助10
3秒前
RockRedfoo完成签到 ,获得积分10
3秒前
fairyinn完成签到,获得积分10
4秒前
5秒前
曼夭非夭完成签到,获得积分10
5秒前
6秒前
XUNAN发布了新的文献求助20
7秒前
丘比特应助容我想想采纳,获得10
9秒前
低温等离子体完成签到,获得积分10
9秒前
易烊干洗发布了新的文献求助10
9秒前
lvbh完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
弯弯完成签到,获得积分10
10秒前
傲慢葫芦发布了新的文献求助10
10秒前
11秒前
胡萝卜的外套完成签到,获得积分20
11秒前
汉堡包应助Wl0115采纳,获得10
11秒前
赵振辉完成签到,获得积分10
12秒前
Astridliuhui完成签到 ,获得积分10
12秒前
富有的酒窝完成签到,获得积分10
12秒前
哆啦B梦完成签到,获得积分10
12秒前
八九发布了新的文献求助10
12秒前
woodwood完成签到,获得积分20
12秒前
oyu完成签到,获得积分10
13秒前
Eletro应助wyhhh采纳,获得20
13秒前
jiayou完成签到,获得积分10
14秒前
Elaine完成签到 ,获得积分20
14秒前
14秒前
十一发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581318
求助须知:如何正确求助?哪些是违规求助? 3150873
关于积分的说明 9485288
捐赠科研通 2852692
什么是DOI,文献DOI怎么找? 1568241
邀请新用户注册赠送积分活动 734562
科研通“疑难数据库(出版商)”最低求助积分说明 720703