Robust remote sensing retrieval of key eutrophication indicators in coastal waters based on explainable machine learning

梯度升压 可解释性 富营养化 环境科学 随机森林 遥感 计算机科学 Boosting(机器学习) 化学需氧量 卫星 决策树 营养物 机器学习 生态学 地理 废水 工程类 航空航天工程 环境工程 生物
作者
Liudi Zhu,Tingwei Cui,A Runa,Xinliang Pan,Wenjing Zhao,Jinzhao Xiang,Mengmeng Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 262-280 被引量:34
标识
DOI:10.1016/j.isprsjprs.2024.04.007
摘要

Excessive discharges of nitrogen and phosphorus nutrients lead to eutrophication in coastal waters. Optical remote sensing retrieval of the key eutrophication indicators, namely dissolved inorganic nitrogen concentration (DIN), soluble reactive phosphate concentration (SRP), and chemical oxygen demand (COD), remains challenging due to lack of distinct spectral features. Although machine learning (ML) has shown the potential, the retrieval accuracy is limited, and the interpretability is insufficient in terms of the black-box characteristics. To address these limitations, based on robust and explainable ML algorithms, we constructed models for retrieving DIN, SRP, and COD over coastal waters of Northern South China Sea (NSCS), which is experiencing prominent eutrophication. Retrieval models based on classification and regression trees (CART) ML algorithms were developed using 4038 groups of in situ observations and quasi-synchronous satellite images. A comparison of CART algorithms, including Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting (XGBoost), indicated the highest retrieval accuracy of XGBoost for DIN (R2 = 0.88, MRE = 24.39 %), SRP (R2 = 0.92, MRE = 33.27 %), and COD (R2 = 0.75, MRE = 18.58 %) for validation dataset. On the basis of spectral remote sensing reflectance, further inputs of ocean physio-chemical properties, spatio-temporal information, and inherent optical properties may reduce retrieval errors by 30.16 %, 19.85 %, and 3.95 %, respectively, and their combined use reduced errors by 54.71 %. Besides, explainable ML analysis characterized the contribution of input features and enhanced the transparency of ML black-box models. Based on the proposed models, 27,278 satellite images and spatio-temporal reconstruction method, 1-km resolution gap-free daily DIN, SRP, and COD products were constructed from 2002 to 2022 for the coastal waters of NSCS. Under the influence of urbanization and river discharge, nitrogen and phosphorus concentrations in this area were found to have increased by 6.09 % and 11.04 %, respectively, over the past 21 years, with the fastest rise in the Pearl River Estuary, where the eutrophic water area had shown an increase rate of approximately 112.66 km2/yr. The proposed robust and explainable ML retrieval models may support ocean environment management and water quality monitoring by providing key eutrophication indicators products over coastal waters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XXXX完成签到,获得积分10
刚刚
自然剑完成签到,获得积分20
刚刚
脑洞疼应助moyu123采纳,获得10
1秒前
红日阳光发布了新的文献求助10
1秒前
小蘑菇应助小玲子采纳,获得10
1秒前
2秒前
3秒前
在水一方应助受伤海秋采纳,获得10
4秒前
完美世界应助自然剑采纳,获得10
4秒前
4秒前
共享精神应助迷路的猎豹采纳,获得10
5秒前
5秒前
6秒前
6秒前
小何发布了新的文献求助10
7秒前
科技hiu个完成签到 ,获得积分10
7秒前
8秒前
科目三应助sqq采纳,获得10
8秒前
orixero应助霏冉采纳,获得10
9秒前
哈哈镜阿姐应助海蓝云天采纳,获得10
9秒前
闪闪的清炎完成签到,获得积分20
9秒前
10秒前
fengmian发布了新的文献求助10
10秒前
10秒前
chenxin完成签到 ,获得积分10
10秒前
12秒前
清脆的水蜜桃完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
15秒前
15秒前
FYD发布了新的文献求助10
15秒前
ksx完成签到,获得积分10
15秒前
17秒前
脑洞疼应助胖胖采纳,获得10
18秒前
团结发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642264
求助须知:如何正确求助?哪些是违规求助? 4758561
关于积分的说明 15017114
捐赠科研通 4800890
什么是DOI,文献DOI怎么找? 2566214
邀请新用户注册赠送积分活动 1524333
关于科研通互助平台的介绍 1483913