Robust remote sensing retrieval of key eutrophication indicators in coastal waters based on explainable machine learning

梯度升压 可解释性 富营养化 环境科学 随机森林 遥感 计算机科学 Boosting(机器学习) 化学需氧量 卫星 决策树 营养物 机器学习 生态学 地理 生物 环境工程 航空航天工程 废水 工程类
作者
Liudi Zhu,Tingwei Cui,A Runa,Xinliang Pan,Wenjing Zhao,Jinzhao Xiang,Mengmeng Cao
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:211: 262-280 被引量:16
标识
DOI:10.1016/j.isprsjprs.2024.04.007
摘要

Excessive discharges of nitrogen and phosphorus nutrients lead to eutrophication in coastal waters. Optical remote sensing retrieval of the key eutrophication indicators, namely dissolved inorganic nitrogen concentration (DIN), soluble reactive phosphate concentration (SRP), and chemical oxygen demand (COD), remains challenging due to lack of distinct spectral features. Although machine learning (ML) has shown the potential, the retrieval accuracy is limited, and the interpretability is insufficient in terms of the black-box characteristics. To address these limitations, based on robust and explainable ML algorithms, we constructed models for retrieving DIN, SRP, and COD over coastal waters of Northern South China Sea (NSCS), which is experiencing prominent eutrophication. Retrieval models based on classification and regression trees (CART) ML algorithms were developed using 4038 groups of in situ observations and quasi-synchronous satellite images. A comparison of CART algorithms, including Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting (XGBoost), indicated the highest retrieval accuracy of XGBoost for DIN (R2 = 0.88, MRE = 24.39 %), SRP (R2 = 0.92, MRE = 33.27 %), and COD (R2 = 0.75, MRE = 18.58 %) for validation dataset. On the basis of spectral remote sensing reflectance, further inputs of ocean physio-chemical properties, spatio-temporal information, and inherent optical properties may reduce retrieval errors by 30.16 %, 19.85 %, and 3.95 %, respectively, and their combined use reduced errors by 54.71 %. Besides, explainable ML analysis characterized the contribution of input features and enhanced the transparency of ML black-box models. Based on the proposed models, 27,278 satellite images and spatio-temporal reconstruction method, 1-km resolution gap-free daily DIN, SRP, and COD products were constructed from 2002 to 2022 for the coastal waters of NSCS. Under the influence of urbanization and river discharge, nitrogen and phosphorus concentrations in this area were found to have increased by 6.09 % and 11.04 %, respectively, over the past 21 years, with the fastest rise in the Pearl River Estuary, where the eutrophic water area had shown an increase rate of approximately 112.66 km2/yr. The proposed robust and explainable ML retrieval models may support ocean environment management and water quality monitoring by providing key eutrophication indicators products over coastal waters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还原糖完成签到,获得积分10
刚刚
刚刚
刚刚
yangjiali完成签到 ,获得积分10
刚刚
bkagyin应助王晓蕾采纳,获得30
1秒前
2秒前
可爱的函函应助小鱼儿采纳,获得10
2秒前
zhangfan完成签到,获得积分10
2秒前
2秒前
泡沫发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
王崇然发布了新的文献求助10
4秒前
6秒前
义气凝阳完成签到,获得积分10
6秒前
6秒前
inin完成签到,获得积分10
6秒前
值得发布了新的文献求助10
7秒前
7秒前
8秒前
juju完成签到,获得积分0
8秒前
科研通AI2S应助123采纳,获得10
9秒前
蔡团队无敌美少女战士完成签到,获得积分10
9秒前
大个应助VAN喵采纳,获得10
9秒前
9秒前
陶贻亮完成签到,获得积分10
9秒前
蒲公英发布了新的文献求助10
9秒前
傅荣轩完成签到,获得积分10
10秒前
Ava应助rrfhl采纳,获得10
10秒前
inin发布了新的文献求助10
10秒前
10秒前
melooo完成签到,获得积分10
10秒前
欧阳振应助合适的梦菡采纳,获得10
11秒前
香蕉觅云应助月饼麻麻采纳,获得10
11秒前
12秒前
天天下雨完成签到 ,获得积分10
12秒前
12秒前
咪吖完成签到,获得积分10
12秒前
mmagg完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974643
求助须知:如何正确求助?哪些是违规求助? 3519094
关于积分的说明 11196979
捐赠科研通 3255182
什么是DOI,文献DOI怎么找? 1797700
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130