In Situ Regulation of MnO2 Structural Characteristics by Oxyanions to Boost Permanganate Autocatalysis for Phenol Removal

化学 自催化 无机化学 高锰酸盐 氧阴离子 苯酚 电子转移 高氯酸盐 催化作用 化学工程 离子 光化学 有机化学 工程类
作者
Meng-Fan Luo,Heng Zhang,Yi Ren,Hongyu Zhou,Peng Zhou,Chuan-Shu He,Zhaokun Xiong,Ye Du,Yang Liu,Bo Lai
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (34): 12847-12857 被引量:14
标识
DOI:10.1021/acs.est.3c02167
摘要

Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure–activity relation analysis. Using bicarbonate (HCO3–) as an example, the results indicate that HCO3– can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3– plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3–. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
发v关乎就完成签到,获得积分20
2秒前
小蘑菇应助小李呀采纳,获得10
5秒前
菠萝吹雪应助科研通管家采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
leening应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
蓝胖子应助科研通管家采纳,获得50
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
猪肉水饺发布了新的文献求助30
6秒前
无花果应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
7秒前
shaoming完成签到,获得积分10
8秒前
9秒前
9秒前
坦率的大树完成签到 ,获得积分10
9秒前
10秒前
思源应助璃沫采纳,获得10
10秒前
VV发布了新的文献求助10
11秒前
小马甲应助meikoo采纳,获得10
11秒前
12秒前
南卡完成签到,获得积分10
12秒前
You完成签到,获得积分10
13秒前
蘑菇发布了新的文献求助10
14秒前
ayuyu发布了新的文献求助30
14秒前
14秒前
15秒前
serenity完成签到 ,获得积分10
15秒前
靓丽雅彤发布了新的文献求助10
15秒前
15秒前
无情洋葱应助22h采纳,获得30
16秒前
852应助踟蹰采纳,获得10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482877
求助须知:如何正确求助?哪些是违规求助? 3072364
关于积分的说明 9126518
捐赠科研通 2764066
什么是DOI,文献DOI怎么找? 1516800
邀请新用户注册赠送积分活动 701808
科研通“疑难数据库(出版商)”最低求助积分说明 700719