From Image Transfer to Object Transfer: Cross-Domain Instance Segmentation Based on Center Point Feature Alignment

计算机科学 人工智能 分割 计算机视觉 模式识别(心理学) 图像分割 学习迁移 目标检测 特征(语言学) 特征提取 哲学 语言学
作者
Jin Wang,Shunping Ji,Tao Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-11 被引量:1
标识
DOI:10.1109/tgrs.2023.3301648
摘要

Remote sensing images can have significant appearance differences due to various factors such as atmospheric conditions, sensor types, seasons, and capture times. Therefore, when applying a pre-trained instance segmentation deep learning model to newly accessed remote sensing images, the model’s performance tends to decrease significantly. Current mainstream image-based or feature-based domain adaptation methods are not designed specifically for the cross-domain instance segmentation problem. These methods attempt to align the whole images, which may not be optimal for instance segmentation tasks. To address this issue, we propose a cross-domain instance segmentation method based on object-level alignment. Instead of aligning the entire images from both datasets, we only align the features of each object instance, particularly the representative center point features. Our approach mainly consists of an improved contour-based instance segmentation model for object-based domain adaptation, an object-pasting enhancement technique based on Fourier domain adaptation (FDA) that effectively reduces the gap between the source and target domains of the object instances, and a self-training strategy that dynamically generates pseudo-labels for iterative model training. Our experiments on cross-domain building instance segmentation demonstrate that the proposed method achieves a 9.5 intersection over union (IoU) improvement over the current best method. Additionally, experiments on a cross-domain close-range dataset involving transfer between simulated and real street images show that our method significantly outperforms the current best method by 6.5 mean average precision (mAP). These results on remote sensing and close-range datasets validate the universality of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助卢本伟牛逼采纳,获得10
1秒前
LL完成签到,获得积分10
4秒前
4秒前
Owen应助南风9723采纳,获得10
5秒前
6秒前
小徐发布了新的文献求助10
10秒前
NexusExplorer应助踏实的研采纳,获得10
11秒前
暴龙战士关注了科研通微信公众号
11秒前
海城好人完成签到,获得积分10
11秒前
11秒前
12秒前
妙手回春板蓝根完成签到,获得积分10
12秒前
田様应助如初采纳,获得20
13秒前
落寞思柔发布了新的文献求助10
14秒前
大大小小发布了新的文献求助10
16秒前
17秒前
地球观光客完成签到,获得积分10
18秒前
一二发布了新的文献求助10
21秒前
21秒前
默默芝麻发布了新的文献求助10
22秒前
25秒前
CodeCraft应助大大小小采纳,获得10
25秒前
小马甲应助小白采纳,获得10
26秒前
LBJ23完成签到,获得积分10
27秒前
28秒前
深情安青应助林俊杰采纳,获得10
31秒前
33秒前
33秒前
不配.应助光亮的半山采纳,获得20
36秒前
一二发布了新的文献求助10
37秒前
bad boy完成签到,获得积分10
38秒前
小白发布了新的文献求助10
38秒前
40秒前
所所应助raffia采纳,获得10
40秒前
恰饭发布了新的文献求助10
43秒前
林俊杰发布了新的文献求助10
45秒前
英勇海秋完成签到 ,获得积分10
46秒前
47秒前
大牛顿完成签到,获得积分10
51秒前
52秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825