流出
细胞内
血管平滑肌
胆固醇
内科学
平衡(能力)
内分泌学
化学
脂质积聚
细胞生物学
平滑肌
生物
生物化学
医学
神经科学
作者
Jiahong Xue,Zuyi Yuan,Yue Wu,Yan Liu,Yan Zhao,Weiping Zhang,Yuling Tian,Weimin Liu,Yü Liu,Chiharu Kishimoto
出处
期刊:Cardiovascular Research
[Oxford University Press]
日期:2009-12-10
卷期号:86 (1): 141-150
被引量:66
摘要
High glucose promotes macrophage-derived foam cell formation involved in increased influx or reduced efflux of lipids. The aim of this study is to investigate the influence of hyperglycaemia on foam cell transformation of vascular smooth muscle cells (VSMCs) and possible mechanisms contributing to these effects.The results showed that high glucose increased the expression of CD36, a regulator of lipid influx, and suppressed the expression and activity of the adenosine triphosphate-binding cassette (ABC) transporter ABCG1, a regulator of cholesterol efflux to high-density lipoprotein, in a dose- and time-dependent manner. However, cholesterol efflux to lipid-free apoAI was not impaired. VSMCs exposed to high glucose readily developed into lipid-loaded cells, as demonstrated by Oil Red O staining and cholesterol content analysis. In addition, high glucose-induced down-regulation of ABCG1 was reversed by nuclear factor-kappaB (NF-kappaB) inhibitors BAY 11-7085 and tosyl-phenylalanine chloromethyl ketone and by the antioxidant N-acetyl-L-cysteine (NAC). This reversal was accompanied by reduced cellular lipid content. Also, NAC and NF-kappaB inhibitors can effectively block the high glucose-induced activity of NF-kappaB binding to DNA and/or peroxide production.These results suggested that hyperglycaemia-induced foam cell formation in VSMCs was related to the imbalanced lipid flux by increasing CD36-mediated modified low-density lipoprotein uptake and reducing ABCG1-regulated cellular cholesterol efflux. Moreover, this effect was associated with increased oxidative stress and activated NF-kappaB pathway signalling.
科研通智能强力驱动
Strongly Powered by AbleSci AI