Underground mine planning and scheduling optimization: Opportunities for embracing machine learning augmented capabilities

调度(生产过程) 计算机科学 时间范围 生产计划 工业工程 导线 运筹学 钥匙(锁) 生产(经济) 人工智能 机器学习 数学优化 工程类 运营管理 数学 计算机安全 大地测量学 经济 宏观经济学 地理
作者
Prosper Chimunhu,Erkan Topal,Ajak Duany Ajak,Mohammad Waqar Ali Asad
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 183-195 被引量:2
标识
DOI:10.1016/b978-0-443-18764-3.00013-8
摘要

Mine Planning and scheduling in underground mining remains a key focal point for optimization studies to drive operational excellence and sustainable attainment of shareholders’ expectations. Manual and mathematical optimization methods have dominated the optimization criterion over the years with the latter gaining momentum due to its superiority in obtaining optimal solutions in both long-term and short-term planning horizons. However, the solitary utilization of mathematical models for the optimization of mine plans and production schedules has exposed fatal flaws related to the accuracy of planning inputs and overall prediction accuracy that require resolution through combinatorial models or a paradigm shift. Specifically, manual schedules and standalone mathematical models struggle to handle parameter perturbations and variability of key planning inputs over time. As such, optimal solutions from these models fail to intimately relate to the mining processes a short period barely after the production plan is published for execution. Fortunately, the technological footprint of Internet of Things (IoT) and the increasing data capturing and computational capabilities of modern-day computing hardware and software are evolving the production planning landscape enormously. Large volumes of historical performance data that have accumulated over the years for operations, and have been lying idle, are now readily available for in-depth analysis through data analytics and machine learning techniques to derive secondary useful insights that can improve the visibility of the operations beyond the immediate horizon. In particular, the enhanced prediction capabilities of machine learning models are perceived to be a game changer in the optimization of underground mining plans and production schedules through improved awareness of the progression of production activities over time. The prediction capabilities of machine learning models provide opportunities for improving the accuracy and validity of input parameters over longer time horizons and changing operating environments. Such an occurrence is undoubtedly expected to facilitate planning and mitigatory controls to be embedded in the mine planning and scheduling process. Further, this will potentially improve the accuracy of production forecasts, compliance with schedules, a true representation of schedules to operations, and above all, improve the accuracy and optimization of production schedules and plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moving_Dr发布了新的文献求助10
1秒前
hmfyl完成签到,获得积分10
2秒前
静默向上完成签到,获得积分10
3秒前
子楚发布了新的文献求助10
3秒前
3秒前
ccc发布了新的文献求助10
5秒前
5秒前
Wx完成签到,获得积分10
6秒前
乐哉发布了新的文献求助10
6秒前
年轻的冰海完成签到,获得积分10
7秒前
7秒前
8秒前
tzk完成签到,获得积分10
10秒前
桐桐应助manman采纳,获得10
11秒前
11秒前
11秒前
Wx发布了新的文献求助10
12秒前
13秒前
九月完成签到,获得积分10
13秒前
李帆完成签到 ,获得积分20
14秒前
稳重伊发布了新的文献求助30
15秒前
雷雷完成签到,获得积分10
16秒前
西扬完成签到,获得积分10
16秒前
平常的之槐完成签到,获得积分20
16秒前
子楚完成签到,获得积分10
16秒前
杳鸢应助甜甜芾采纳,获得30
16秒前
Forest完成签到,获得积分10
17秒前
科研通AI2S应助活泼的冬寒采纳,获得10
18秒前
雅琳子发布了新的文献求助10
18秒前
水上书完成签到,获得积分10
19秒前
19秒前
科目三应助fatemiss采纳,获得10
19秒前
ppzy关注了科研通微信公众号
20秒前
kecy完成签到 ,获得积分10
20秒前
小鸭子应助Tutusamo采纳,获得10
20秒前
22秒前
小芒果完成签到,获得积分10
22秒前
乐哉完成签到,获得积分10
22秒前
大模型应助liangxt采纳,获得10
22秒前
xiaowang完成签到,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385