Deep learning Analysis for Rapid detection and classification of household plastics based on Raman spectroscopy

拉曼光谱 人工智能 支持向量机 线性判别分析 机器学习 卷积神经网络 模式识别(心理学) 计算机科学 微塑料 深度学习 噪音(视频) 鉴定(生物学) 材料科学 化学 光学 物理 环境化学 图像(数学) 生物 植物
作者
Yazhou Qin,Jiaxin Qiu,Nan Tang,Yingsheng He,Fan Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:309: 123854-123854 被引量:5
标识
DOI:10.1016/j.saa.2024.123854
摘要

The overuse of plastics releases large amounts of microplastics. These tiny and complex pollutants may cause immeasurable damage to human social life. Raman spectroscopy detection technology is widely used in the detection, identification and analysis of microplastics due to its advantages of fast speed, high sensitivity and non-destructive. In this work, we first recorded the Raman spectra of eight common plastics in daily life. By adjusting parameters such as laser wavelength, laser power, and acquisition time, the Raman data under different acquisition conditions were diversified, and the corresponding Raman spectra were obtained, and a database of eight household plastics was established. Combined with deep learning algorithms, an accurate, fast and simple classification and identification method for 8 types of plastics is established. Firstly, the acquired spectral data were preprocessed for baseline correction and noise reduction, Then, four machine learning algorithms, linear discriminant analysis (LDA), decision tree, support vector machine (SVM) and one-dimensional convolutional neural network (1D-CNN), are used to classify and identify the preprocessed data. The results showed that the classification accuracy of the three machine learning models for the Raman spectra of standard plastic samples were 84%, 93% and 93% respectively. The 1D-CNN model has an accuracy rate of up to 97% for Raman spectroscopy. Our study shows that the combination of Raman spectroscopy detection techniques and deep learning algorithms is a very valuable approach for microplastic classification and identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助shenyanlei采纳,获得10
刚刚
kdkfjaljk完成签到 ,获得积分10
刚刚
刚刚
CipherSage应助芒果采纳,获得10
刚刚
刚刚
1秒前
nini完成签到,获得积分10
1秒前
1秒前
1秒前
FloppyWow发布了新的文献求助10
2秒前
2秒前
2秒前
白白发布了新的文献求助10
3秒前
隐形曼青应助小猴采纳,获得10
3秒前
灵巧荆发布了新的文献求助10
3秒前
4秒前
kdkfjaljk关注了科研通微信公众号
5秒前
Jackson发布了新的文献求助10
5秒前
5秒前
phz发布了新的文献求助10
5秒前
贺兰鸵鸟完成签到,获得积分10
5秒前
马保国123发布了新的文献求助10
6秒前
6秒前
直率尔芙完成签到,获得积分10
6秒前
shenyanlei完成签到,获得积分20
6秒前
尔云发布了新的文献求助20
6秒前
wwuu完成签到,获得积分10
6秒前
6秒前
xiaoxiaomi应助阳光下的星星采纳,获得20
7秒前
爱X7的嘛喽完成签到,获得积分10
7秒前
Louise完成签到,获得积分10
7秒前
7秒前
喜悦中道应助白白采纳,获得10
8秒前
CipherSage应助dong采纳,获得10
9秒前
9秒前
9秒前
zz完成签到 ,获得积分10
9秒前
9秒前
223344完成签到,获得积分10
10秒前
欧阳半仙完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762