Deep learning analysis for rapid detection and classification of household plastics based on Raman spectroscopy

拉曼光谱 人工智能 支持向量机 线性判别分析 机器学习 卷积神经网络 模式识别(心理学) 计算机科学 微塑料 深度学习 噪音(视频) 鉴定(生物学) 生物系统 分析化学(期刊) 化学 光学 物理 色谱法 环境化学 植物 图像(数学) 生物
作者
Yazhou Qin,Jiaxin Qiu,Nan Tang,Yingsheng He,Fan Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:309: 123854-123854 被引量:13
标识
DOI:10.1016/j.saa.2024.123854
摘要

The overuse of plastics releases large amounts of microplastics. These tiny and complex pollutants may cause immeasurable damage to human social life. Raman spectroscopy detection technology is widely used in the detection, identification and analysis of microplastics due to its advantages of fast speed, high sensitivity and non-destructive. In this work, we first recorded the Raman spectra of eight common plastics in daily life. By adjusting parameters such as laser wavelength, laser power, and acquisition time, the Raman data under different acquisition conditions were diversified, and the corresponding Raman spectra were obtained, and a database of eight household plastics was established. Combined with deep learning algorithms, an accurate, fast and simple classification and identification method for 8 types of plastics is established. Firstly, the acquired spectral data were preprocessed for baseline correction and noise reduction, Then, four machine learning algorithms, linear discriminant analysis (LDA), decision tree, support vector machine (SVM) and one-dimensional convolutional neural network (1D-CNN), are used to classify and identify the preprocessed data. The results showed that the classification accuracy of the three machine learning models for the Raman spectra of standard plastic samples were 84%, 93% and 93% respectively. The 1D-CNN model has an accuracy rate of up to 97% for Raman spectroscopy. Our study shows that the combination of Raman spectroscopy detection techniques and deep learning algorithms is a very valuable approach for microplastic classification and identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZhouYW发布了新的文献求助10
1秒前
Memory完成签到,获得积分10
1秒前
1秒前
碟中完成签到,获得积分10
1秒前
新世界陆战队完成签到 ,获得积分10
2秒前
科研通AI6应助XIAONAN采纳,获得10
2秒前
2秒前
小鹅呀完成签到,获得积分10
3秒前
kl发布了新的文献求助10
3秒前
HEIREN1发布了新的文献求助10
3秒前
标致无心完成签到 ,获得积分10
3秒前
Ava应助张琪采纳,获得10
3秒前
4秒前
打打应助zxx采纳,获得10
4秒前
4秒前
4秒前
5秒前
6秒前
兴奋的平松完成签到,获得积分10
6秒前
th发布了新的文献求助10
6秒前
在水一方应助噜噜噜噜噜采纳,获得10
6秒前
今天是周六关注了科研通微信公众号
7秒前
量子星尘发布了新的文献求助10
7秒前
Jasper应助liya采纳,获得10
7秒前
在水一方应助规划局采纳,获得10
7秒前
8秒前
YZfeb24完成签到,获得积分10
8秒前
Zzzzz发布了新的文献求助10
8秒前
8秒前
香蕉觅云应助HEIREN1采纳,获得10
9秒前
周游完成签到,获得积分10
9秒前
华仔应助白色的明镜采纳,获得10
11秒前
ZhouYW发布了新的文献求助10
12秒前
13秒前
13秒前
nihaku发布了新的文献求助10
14秒前
15秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468569
求助须知:如何正确求助?哪些是违规求助? 4571972
关于积分的说明 14333100
捐赠科研通 4498720
什么是DOI,文献DOI怎么找? 2464680
邀请新用户注册赠送积分活动 1453311
关于科研通互助平台的介绍 1427914