Cotton Emergence Uniformity Assessment Using Remote Sensing and Machine Learning

皮棉 计算机科学 人工智能 霍夫变换 交叉口(航空) 农业工程 数学 机器学习 地理 工程类 地图学 图像(数学) 操作系统
标识
DOI:10.13031/aim.202300471
摘要

Abstract. Seed emergence uniformity has a significant impact on plant vigor, emergence rate and overall crop health, which ultimately affects fruit production. Identifying the optimal germination rate, taking into account different genotypes and environmental factors, is critical to improving crop yield. This study presents a novel method that uses an unmanned aerial vehicle (UAV) to collect RGB field images and applies deep learning and statistical analysis to evaluate cotton (Gossypium hirsutum L.) uniformity under varying seeding rates. Traditional methods often involve laborious manual plant counting to identify areas of over- or under-emergence that affect lint yield, a time-consuming process for large fields. To address this issue, our study, conducted in southern Missouri, USA, used five different seeding rates. We used a UAV-mounted camera to capture field images two weeks after planting. These images were stitched into an orthomosaic of the entire field and then segmented into smaller blocks. The YOLOv7 object detection algorithm was used to locate each cotton plant within the segmented images. We also used the Hough transform and polynomial regression techniques to identify cotton rows and remove weeds. These methods yielded a mean average accuracy at 50% intersection over the union threshold of 96.8% mAP@50. This study provides valuable insights by developing a pipeline for early-stage cotton stand count and distance estimation using remote sensing techniques. This approach improves the assessment of cotton emergence uniformity, leading to more efficient crop management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西贝子子发布了新的文献求助10
刚刚
刚刚
lixiaofan发布了新的文献求助10
1秒前
3秒前
ysx完成签到 ,获得积分10
3秒前
znn发布了新的文献求助10
3秒前
4秒前
4秒前
PPPPPP发布了新的文献求助10
5秒前
小二郎应助旺仔喜之郎采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
wuyuzhu完成签到,获得积分10
6秒前
6秒前
蓝天应助pp采纳,获得10
6秒前
东旭完成签到,获得积分10
6秒前
7秒前
tianyi55567完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
10秒前
11秒前
喳喳瑶发布了新的文献求助10
11秒前
木木发布了新的文献求助10
11秒前
玉米发布了新的文献求助10
11秒前
kk发布了新的文献求助10
13秒前
东旭发布了新的文献求助10
13秒前
JamesPei应助勇敢的心采纳,获得10
13秒前
13秒前
tombo100发布了新的文献求助10
13秒前
14秒前
14秒前
sw123完成签到 ,获得积分10
15秒前
15秒前
叶访云完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784558
求助须知:如何正确求助?哪些是违规求助? 5682922
关于积分的说明 15464566
捐赠科研通 4913664
什么是DOI,文献DOI怎么找? 2644848
邀请新用户注册赠送积分活动 1592770
关于科研通互助平台的介绍 1547187