TWC-EL: A multivariate prediction model by the fusion of three-way clustering and ensemble learning

聚类分析 计算机科学 人工智能 随机性 相关聚类 集成学习 数据挖掘 多元统计 模式识别(心理学) 交叉口(航空) 机器学习 数学 统计 工程类 航空航天工程
作者
Xunjin Wu,Jianming Zhan,Weiping Ding
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101966-101966 被引量:9
标识
DOI:10.1016/j.inffus.2023.101966
摘要

Multivariate data analysis, as an important research topic in the field of machine learning, focuses on how to utilize the intrinsic connection between feature variables and target variables. However, in the face of complex multivariate prediction environments, existing single prediction models often fail to obtain ideal results. Meanwhile, existing ensemble prediction models are not always adapted to certain complex data. Moreover, the randomness in the clustering process cannot guarantee the clustering accuracy. Therefore, to improve the model's prediction accuracy and ability to adapt to complex data and reduce the impact of randomness on clustering accuracy, this paper designs a multivariate prediction model utilizing three-way clustering (TWC) and ensemble learning, which is named the TWC-EL model. First, the initial division of the sample set is realized by k-means clustering algorithm, and further the sample set is divided again via the k-means clustering algorithm to solve the problem of clustering accuracy. Then, the results of clustering twice are combined according to the difference in the number of intersection points and the distance from the samples to the center point of each cluster, and the core and fringe regions of each cluster in the initial clustering results are obtained, forming a new TWC method. Next, based on the correlation between the regions, the obtained core and fringe regions are classified into low-correlation, medium-correlation and high-correlation regions, and an ensemble prediction model is designed by combining the advantages of the Elman neural network model, the Extreme Learning Machine (ELM) model and the back propagation neural network (BPNN) model. Finally, the experimental analysis results exhibit that the constructed TWC-EL model is efficient and feasible, and points out the excellent performance compared with the existing prediction models. The validity of the TWC method and the ensemble prediction model in the proposed TWC-EL model are verified by experiments, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wll发布了新的文献求助10
1秒前
毛豆应助刻苦蚂蚁采纳,获得10
2秒前
三石发布了新的文献求助30
2秒前
pluto应助研友_xnEOX8采纳,获得50
4秒前
4秒前
脆弱的仙人掌完成签到,获得积分10
5秒前
5秒前
xl完成签到 ,获得积分10
5秒前
龑龍天发布了新的文献求助10
5秒前
6秒前
aceman发布了新的文献求助10
6秒前
6秒前
yolo39应助Bertie采纳,获得10
7秒前
文静三颜发布了新的文献求助10
7秒前
搜集达人应助玩命的学姐采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
zouzou应助科研通管家采纳,获得20
8秒前
英姑应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
无餍应助科研通管家采纳,获得20
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
linghanlan应助科研通管家采纳,获得20
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
藤椒辣鱼应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Lsss完成签到 ,获得积分10
9秒前
13秒前
隐形曼青应助月亮是甜的采纳,获得10
13秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663