TWC-EL: A multivariate prediction model by the fusion of three-way clustering and ensemble learning

聚类分析 计算机科学 人工智能 随机性 相关聚类 集成学习 数据挖掘 多元统计 模式识别(心理学) 交叉口(航空) 机器学习 数学 统计 工程类 航空航天工程
作者
Xunjin Wu,Jianming Zhan,Weiping Ding
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101966-101966 被引量:9
标识
DOI:10.1016/j.inffus.2023.101966
摘要

Multivariate data analysis, as an important research topic in the field of machine learning, focuses on how to utilize the intrinsic connection between feature variables and target variables. However, in the face of complex multivariate prediction environments, existing single prediction models often fail to obtain ideal results. Meanwhile, existing ensemble prediction models are not always adapted to certain complex data. Moreover, the randomness in the clustering process cannot guarantee the clustering accuracy. Therefore, to improve the model's prediction accuracy and ability to adapt to complex data and reduce the impact of randomness on clustering accuracy, this paper designs a multivariate prediction model utilizing three-way clustering (TWC) and ensemble learning, which is named the TWC-EL model. First, the initial division of the sample set is realized by k-means clustering algorithm, and further the sample set is divided again via the k-means clustering algorithm to solve the problem of clustering accuracy. Then, the results of clustering twice are combined according to the difference in the number of intersection points and the distance from the samples to the center point of each cluster, and the core and fringe regions of each cluster in the initial clustering results are obtained, forming a new TWC method. Next, based on the correlation between the regions, the obtained core and fringe regions are classified into low-correlation, medium-correlation and high-correlation regions, and an ensemble prediction model is designed by combining the advantages of the Elman neural network model, the Extreme Learning Machine (ELM) model and the back propagation neural network (BPNN) model. Finally, the experimental analysis results exhibit that the constructed TWC-EL model is efficient and feasible, and points out the excellent performance compared with the existing prediction models. The validity of the TWC method and the ensemble prediction model in the proposed TWC-EL model are verified by experiments, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江川完成签到,获得积分10
刚刚
33发布了新的文献求助10
刚刚
听风者完成签到,获得积分10
刚刚
1秒前
球球发布了新的文献求助10
1秒前
1秒前
wangchong发布了新的文献求助10
2秒前
英俊的汉堡完成签到,获得积分10
2秒前
快乐二方完成签到 ,获得积分10
2秒前
缓慢逍遥完成签到 ,获得积分10
3秒前
3秒前
AlexanderChen发布了新的文献求助10
5秒前
搜集达人应助冷酷夏真采纳,获得10
5秒前
6秒前
LaKI完成签到,获得积分10
6秒前
33完成签到,获得积分10
6秒前
大佛应助韭菜盒子采纳,获得10
7秒前
7秒前
不倒翁发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
ding完成签到,获得积分20
9秒前
幸福小蛋挞完成签到,获得积分10
10秒前
33333完成签到,获得积分10
10秒前
ding发布了新的文献求助10
12秒前
13秒前
动听的琳发布了新的文献求助10
13秒前
13秒前
123发布了新的文献求助10
13秒前
13秒前
14秒前
追寻的似狮完成签到,获得积分20
15秒前
16秒前
尊敬泽洋发布了新的文献求助10
17秒前
苹果鱼完成签到,获得积分10
17秒前
左嫣娆发布了新的文献求助10
18秒前
优美紫槐发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605558
求助须知:如何正确求助?哪些是违规求助? 4690129
关于积分的说明 14862351
捐赠科研通 4701941
什么是DOI,文献DOI怎么找? 2542175
邀请新用户注册赠送积分活动 1507804
关于科研通互助平台的介绍 1472113