亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TWC-EL: A multivariate prediction model by the fusion of three-way clustering and ensemble learning

聚类分析 计算机科学 人工智能 随机性 相关聚类 集成学习 数据挖掘 多元统计 模式识别(心理学) 交叉口(航空) 机器学习 数学 统计 工程类 航空航天工程
作者
Xunjin Wu,Jianming Zhan,Weiping Ding
出处
期刊:Information Fusion [Elsevier BV]
卷期号:100: 101966-101966 被引量:9
标识
DOI:10.1016/j.inffus.2023.101966
摘要

Multivariate data analysis, as an important research topic in the field of machine learning, focuses on how to utilize the intrinsic connection between feature variables and target variables. However, in the face of complex multivariate prediction environments, existing single prediction models often fail to obtain ideal results. Meanwhile, existing ensemble prediction models are not always adapted to certain complex data. Moreover, the randomness in the clustering process cannot guarantee the clustering accuracy. Therefore, to improve the model's prediction accuracy and ability to adapt to complex data and reduce the impact of randomness on clustering accuracy, this paper designs a multivariate prediction model utilizing three-way clustering (TWC) and ensemble learning, which is named the TWC-EL model. First, the initial division of the sample set is realized by k-means clustering algorithm, and further the sample set is divided again via the k-means clustering algorithm to solve the problem of clustering accuracy. Then, the results of clustering twice are combined according to the difference in the number of intersection points and the distance from the samples to the center point of each cluster, and the core and fringe regions of each cluster in the initial clustering results are obtained, forming a new TWC method. Next, based on the correlation between the regions, the obtained core and fringe regions are classified into low-correlation, medium-correlation and high-correlation regions, and an ensemble prediction model is designed by combining the advantages of the Elman neural network model, the Extreme Learning Machine (ELM) model and the back propagation neural network (BPNN) model. Finally, the experimental analysis results exhibit that the constructed TWC-EL model is efficient and feasible, and points out the excellent performance compared with the existing prediction models. The validity of the TWC method and the ensemble prediction model in the proposed TWC-EL model are verified by experiments, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
233完成签到 ,获得积分10
6秒前
ll完成签到 ,获得积分10
7秒前
ST发布了新的文献求助10
14秒前
Mine完成签到,获得积分10
32秒前
在水一方应助Mine采纳,获得10
35秒前
Hello应助leanne采纳,获得10
38秒前
谷千千完成签到,获得积分20
49秒前
58秒前
59秒前
1分钟前
搜集达人应助俏皮绿蓉采纳,获得10
1分钟前
1分钟前
leanne发布了新的文献求助10
1分钟前
灰色白面鸮完成签到,获得积分10
1分钟前
1分钟前
东郭凝蝶完成签到 ,获得积分10
1分钟前
1分钟前
勇敢牛牛完成签到 ,获得积分10
1分钟前
1分钟前
DoctorG发布了新的文献求助10
1分钟前
1分钟前
我是老大应助DoctorG采纳,获得10
1分钟前
yaling完成签到,获得积分10
1分钟前
1分钟前
白切鸡大王完成签到,获得积分10
1分钟前
1分钟前
向莉完成签到 ,获得积分10
1分钟前
norman完成签到,获得积分20
1分钟前
yaling发布了新的文献求助10
1分钟前
调皮的浩天完成签到,获得积分20
1分钟前
俏皮绿蓉发布了新的文献求助10
1分钟前
orixero应助文静的听荷采纳,获得10
1分钟前
1分钟前
领导范儿应助白切鸡大王采纳,获得10
1分钟前
OmmeHabiba完成签到,获得积分10
1分钟前
盛夏如花发布了新的文献求助10
1分钟前
俏皮绿蓉完成签到,获得积分10
2分钟前
wuu发布了新的文献求助10
2分钟前
搜集达人应助Zirong采纳,获得10
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188