TWC-EL: A multivariate prediction model by the fusion of three-way clustering and ensemble learning

聚类分析 计算机科学 人工智能 随机性 相关聚类 集成学习 数据挖掘 多元统计 模式识别(心理学) 交叉口(航空) 机器学习 数学 统计 工程类 航空航天工程
作者
Xunjin Wu,Jianming Zhan,Weiping Ding
出处
期刊:Information Fusion [Elsevier]
卷期号:100: 101966-101966 被引量:9
标识
DOI:10.1016/j.inffus.2023.101966
摘要

Multivariate data analysis, as an important research topic in the field of machine learning, focuses on how to utilize the intrinsic connection between feature variables and target variables. However, in the face of complex multivariate prediction environments, existing single prediction models often fail to obtain ideal results. Meanwhile, existing ensemble prediction models are not always adapted to certain complex data. Moreover, the randomness in the clustering process cannot guarantee the clustering accuracy. Therefore, to improve the model's prediction accuracy and ability to adapt to complex data and reduce the impact of randomness on clustering accuracy, this paper designs a multivariate prediction model utilizing three-way clustering (TWC) and ensemble learning, which is named the TWC-EL model. First, the initial division of the sample set is realized by k-means clustering algorithm, and further the sample set is divided again via the k-means clustering algorithm to solve the problem of clustering accuracy. Then, the results of clustering twice are combined according to the difference in the number of intersection points and the distance from the samples to the center point of each cluster, and the core and fringe regions of each cluster in the initial clustering results are obtained, forming a new TWC method. Next, based on the correlation between the regions, the obtained core and fringe regions are classified into low-correlation, medium-correlation and high-correlation regions, and an ensemble prediction model is designed by combining the advantages of the Elman neural network model, the Extreme Learning Machine (ELM) model and the back propagation neural network (BPNN) model. Finally, the experimental analysis results exhibit that the constructed TWC-EL model is efficient and feasible, and points out the excellent performance compared with the existing prediction models. The validity of the TWC method and the ensemble prediction model in the proposed TWC-EL model are verified by experiments, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Research完成签到 ,获得积分10
4秒前
13秒前
17秒前
flyingpig发布了新的文献求助10
17秒前
huanir99发布了新的文献求助80
19秒前
时光不旧只是满尘灰完成签到 ,获得积分10
21秒前
xu发布了新的文献求助10
22秒前
Singularity完成签到,获得积分0
24秒前
辛勤的喉完成签到 ,获得积分10
24秒前
贝贝完成签到 ,获得积分10
26秒前
zozox完成签到 ,获得积分10
41秒前
等待小丸子完成签到,获得积分10
42秒前
ChatGPT发布了新的文献求助10
53秒前
55秒前
仰望星空发布了新的文献求助10
1分钟前
IShowSpeed完成签到,获得积分10
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
忆茶戏完成签到 ,获得积分10
1分钟前
carl完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得30
1分钟前
传奇3应助科研通管家采纳,获得30
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
害怕的小刺猬完成签到 ,获得积分10
1分钟前
认真的奇异果完成签到 ,获得积分10
1分钟前
顾矜应助Li采纳,获得10
1分钟前
木木完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分0
1分钟前
LINDENG2004完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
甘sir完成签到 ,获得积分10
1分钟前
Li发布了新的文献求助10
1分钟前
无辜的行云完成签到 ,获得积分0
1分钟前
华仔应助Li采纳,获得10
1分钟前
t铁核桃1985完成签到 ,获得积分0
2分钟前
含蓄的静竹完成签到 ,获得积分10
2分钟前
忧心的藏鸟完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650009
关于积分的说明 14689401
捐赠科研通 4591860
什么是DOI,文献DOI怎么找? 2519386
邀请新用户注册赠送积分活动 1491920
关于科研通互助平台的介绍 1463118