ACDC: Automated Creation of Digital Cousins for Robust Policy Learning

计算机科学 人工智能 数据科学
作者
Tianyuan Dai,Josiah Wong,Yunfan Jiang,Chen Wang,Cem Gökmen,Ruohan Zhang,Jiajun Wu,Feifei Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.07408
摘要

Training robot policies in the real world can be unsafe, costly, and difficult to scale. Simulation serves as an inexpensive and potentially limitless source of training data, but suffers from the semantics and physics disparity beween simulated and real-world environments. These discrepancies can be minimized by training in digital twins,which serve as virtual replicas of a real scene but are expensive to generate and cannot produce cross-domain generalization. To address these limitations, we propose the concept of digital cousins, a virtual asset or scene that, unlike a digital twin,does not explicitly model a real-world counterpart but still exhibits similar geometric and semantic affordances. As a result, digital cousins simultaneously reduce the cost of generating an analogous virtual environment while also facilitating better robustness during sim-to-real domain transfer by providing a distribution of similar training scenes. Leveraging digital cousins, we introduce a novel method for the Automatic Creation of Digital Cousins (ACDC), and propose a fully automated real-to-sim-to-real pipeline for generating fully interactive scenes and training robot policies that can be deployed zero-shot in the original scene. We find that ACDC can produce digital cousin scenes that preserve geometric and semantic affordances, and can be used to train policies that outperform policies trained on digital twins, achieving 90% vs. 25% under zero-shot sim-to-real transfer. Additional details are available at https://digital-cousins.github.io/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Conan完成签到 ,获得积分10
刚刚
刚刚
嘻嘻桃完成签到,获得积分10
1秒前
HH1202完成签到,获得积分10
1秒前
KEyanba发布了新的文献求助10
2秒前
传奇3应助朱子采纳,获得10
3秒前
3秒前
在水一方应助Leeny采纳,获得10
3秒前
乐乐乐乐乐完成签到,获得积分10
4秒前
xxx发布了新的文献求助10
4秒前
太阳发布了新的文献求助10
4秒前
席从云完成签到,获得积分20
5秒前
HUMBLE完成签到,获得积分10
6秒前
JamesPei应助淡淡的凝冬采纳,获得10
6秒前
花生了什么树完成签到 ,获得积分10
7秒前
赵文伟完成签到,获得积分10
7秒前
席从云发布了新的文献求助20
8秒前
杳鸢应助木木采纳,获得10
9秒前
lsy发布了新的文献求助10
9秒前
赵文伟发布了新的文献求助10
10秒前
10秒前
圆圆完成签到,获得积分20
10秒前
12秒前
顾矜应助优美丹雪采纳,获得10
13秒前
13秒前
KYT_Hu完成签到,获得积分10
13秒前
善学以致用应助多边形采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
16秒前
计时器响了完成签到,获得积分10
16秒前
田様应助quanshijie采纳,获得10
17秒前
一颗西柚发布了新的文献求助10
17秒前
优雅苑睐发布了新的文献求助10
18秒前
18秒前
wen完成签到,获得积分10
18秒前
lsy完成签到,获得积分10
18秒前
不配.应助沉默的飞柏采纳,获得10
19秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217006
求助须知:如何正确求助?哪些是违规求助? 2866175
关于积分的说明 8150709
捐赠科研通 2532816
什么是DOI,文献DOI怎么找? 1365874
科研通“疑难数据库(出版商)”最低求助积分说明 644635
邀请新用户注册赠送积分活动 617556