Boosting engineering optimization with a novel recursive transfer bi-fidelity surrogate modeling

替代模型 Boosting(机器学习) 计算机科学 忠诚 数学优化 人工智能 机器学习 数学 电信
作者
Xueguan Song,Shuai Zhang,Yong Pang,Jianji Li,Jian‐Kang Zhang
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:: 1-28
标识
DOI:10.1115/1.4066688
摘要

Abstract In the engineering optimization, there often exist the multiple sources of information with different fidelity levels. In general, low-fidelity (LF) information is usually more accessible than high-fidelity (HF) information, while the latter is usually more accurate than the former. Thus, to capitalize on the advantages of this information, this study proposes a novel recursive transfer bi-fidelity surrogate modeling to fuse information from HF and LF levels. Firstly, the selection method of optimal scale factor is proposed for constructing bi-fidelity surrogate model. Then, a recursive method is developed to further improve its performance. The efficacy of the proposed model is comprehensively evaluated using numerical problems and an engineering example. Comparative analysis with some surrogate models (five multi-fidelity and a single-fidelity surrogate models) demonstrates the superior prediction accuracy and robustness of the proposed model. Additionally, the impact of varying cost ratios and combinations of HF and LF samples on the performance of the proposed model is also investigated, yielding consistent results. Overall, the proposed model has superior performance and holds potential for practical applications in engineering design optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李安全完成签到,获得积分10
1秒前
严谨严谨严谨完成签到 ,获得积分10
3秒前
李大王完成签到 ,获得积分10
4秒前
4秒前
xiaorui完成签到,获得积分10
5秒前
5秒前
凳凳子完成签到,获得积分10
5秒前
sun完成签到,获得积分10
6秒前
CACT完成签到,获得积分10
7秒前
苽峰完成签到,获得积分10
7秒前
沈剑心发布了新的文献求助10
7秒前
Hello应助WT采纳,获得10
8秒前
王木木完成签到 ,获得积分10
8秒前
白色蒲公英完成签到,获得积分10
8秒前
昏睡的翩跹关注了科研通微信公众号
8秒前
乐可乐完成签到,获得积分10
9秒前
10秒前
仓促过客发布了新的文献求助10
11秒前
11秒前
ilk666完成签到,获得积分10
13秒前
13秒前
邢哥哥发布了新的文献求助30
13秒前
bigxianyu完成签到,获得积分10
13秒前
小雨完成签到,获得积分10
14秒前
不知所措的咪完成签到,获得积分10
15秒前
加加林发布了新的文献求助10
16秒前
KevinT应助yang采纳,获得30
16秒前
可爱半山完成签到 ,获得积分10
16秒前
酷波er应助o海边风o采纳,获得30
17秒前
17秒前
sui完成签到,获得积分10
18秒前
aaaaa发布了新的文献求助10
19秒前
呆鹅喵喵完成签到,获得积分10
23秒前
WY完成签到,获得积分10
23秒前
24秒前
Ammon完成签到,获得积分10
26秒前
姜惠完成签到,获得积分10
26秒前
LiHongXi完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224