Boosting engineering optimization with a novel recursive transfer bi-fidelity surrogate modeling

替代模型 Boosting(机器学习) 计算机科学 忠诚 数学优化 人工智能 机器学习 数学 电信
作者
Xueguan Song,Shuai Zhang,Yong Pang,Jianji Li,Jian‐Kang Zhang
出处
期刊:Journal of Mechanical Design [American Society of Mechanical Engineers]
卷期号:: 1-28
标识
DOI:10.1115/1.4066688
摘要

Abstract In the engineering optimization, there often exist the multiple sources of information with different fidelity levels. In general, low-fidelity (LF) information is usually more accessible than high-fidelity (HF) information, while the latter is usually more accurate than the former. Thus, to capitalize on the advantages of this information, this study proposes a novel recursive transfer bi-fidelity surrogate modeling to fuse information from HF and LF levels. Firstly, the selection method of optimal scale factor is proposed for constructing bi-fidelity surrogate model. Then, a recursive method is developed to further improve its performance. The efficacy of the proposed model is comprehensively evaluated using numerical problems and an engineering example. Comparative analysis with some surrogate models (five multi-fidelity and a single-fidelity surrogate models) demonstrates the superior prediction accuracy and robustness of the proposed model. Additionally, the impact of varying cost ratios and combinations of HF and LF samples on the performance of the proposed model is also investigated, yielding consistent results. Overall, the proposed model has superior performance and holds potential for practical applications in engineering design optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LHG完成签到,获得积分10
1秒前
1秒前
orixero应助查查采纳,获得10
1秒前
微笑的书蝶完成签到 ,获得积分10
1秒前
2秒前
安若剑完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助50
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
顾矜应助司空元正采纳,获得10
6秒前
oldblack发布了新的文献求助50
8秒前
Ferry发布了新的文献求助10
9秒前
SCI硬通货发布了新的文献求助10
10秒前
共享精神应助w1x2123采纳,获得10
10秒前
茁长的树苗完成签到 ,获得积分10
10秒前
10秒前
可yi完成签到,获得积分10
11秒前
Yongander完成签到,获得积分10
11秒前
11秒前
小二郎应助忘尘采纳,获得10
11秒前
英俊的铭应助liuxian采纳,获得10
12秒前
Mxaxxxx发布了新的文献求助10
13秒前
14秒前
在水一方应助oleskarabach采纳,获得10
14秒前
16秒前
16秒前
cccf发布了新的文献求助10
17秒前
Zewen_Li应助研友_LJGOan采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
烤乳猪发布了新的文献求助10
19秒前
难过以晴发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
lmd250909完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408