钙钛矿(结构)
材料科学
光电子学
带隙
能量转换效率
图层(电子)
量子隧道
双层
纳米技术
化学工程
化学
工程类
生物化学
膜
作者
Minwoo Lee,Jihoo Lim,Eun Young Choi,Arman Mahboubi Soufiani,Seungmin Lee,Fa‐Jun Ma,Sean Lim,Jan Seidel,Dong Han Seo,Ji‐Sang Park,Wonjong Lee,Jongchul Lim,Richard F. Webster,Jincheol Kim,Danyang Wang,Martin A. Green,Dohyung Kim,Jun Hong Noh,Xiaojing Hao,Jae Sung Yun
标识
DOI:10.1002/adma.202402053
摘要
Abstract Reducing non‐radiative recombination and addressing band alignment mismatches at interfaces remain major challenges in achieving high‐performance wide‐bandgap perovskite solar cells. This study proposes the self‐organization of a thin two‐dimensional (2D) perovskite BA 2 PbBr 4 layer beneath a wide‐bandgap three‐dimensional (3D) perovskite Cs 0.17 FA 0.83 Pb(I 0.6 Br 0.4 ) 3 , forming a 2D/3D bilayer structure on a tin oxide (SnO 2 ) layer. This process is driven by interactions between the oxygen vacancies on the SnO 2 surface and hydrogen atoms of the n‐butylammonium cation, aiding the self‐assembly of the BA 2 PbBr 4 2D layer. The 2D perovskite acts as a tunneling layer between SnO 2 and the 3D perovskite, neutralizing the energy level mismatch and reducing non‐radiative recombination. This results in high power conversion efficiencies of 21.54% and 19.16% for wide‐bandgap perovskite solar cells with bandgaps of 1.7 and 1.8 eV, with open‐circuit voltages over 1.3 V under 1‐Sun illumination. Furthermore, an impressive efficiency of over 43% is achieved under indoor conditions, specifically under 200 lux white light‐emitting diode light, yielding an output voltage exceeding 1 V. The device also demonstrates enhanced stability, lasting up to 1,200 hours.
科研通智能强力驱动
Strongly Powered by AbleSci AI