材料科学
阴极
电化学
离子
钒
钒酸盐
化学工程
铝
镁
化学物理
无机化学
复合材料
冶金
电极
化学
物理化学
有机化学
工程类
作者
Han Tang,Feiyang Chao,Huibiao Chen,Runmin Jia,Hongyu Luo,Fangyu Xiong,Xuhui Yao,Wenwei Zhang,Chunli Zuo,Juan Wang,Ping Luo,Qinyou An
出处
期刊:Small
[Wiley]
日期:2022-08-26
卷期号:18 (39)
被引量:12
标识
DOI:10.1002/smll.202203525
摘要
Magnesium ion batteries (MIBs) have attracted much attention due to their low cost and high safety properties. However, the intense charge repulsion effect and sluggish diffusion dynamics of Mg2+ ions result in unsatisfactory electrochemical performance of conventional cathode materials in MIBs. This work reports water-lubricated aluminum vanadate (HAlVO) as high-performance cathode material for Mg2+ ions storage and investigates the capacity fade mechanism of water-free aluminum vanadate (AlVO). The charge density difference based on density functional theory calculation is performed to analyze the charge transfer process of water-lubricated/free aluminum vanadates (HAlVO/AlVO). The different charge transfer phenomena of two materials and the charge shielding effect of water molecule in HAlVO are revealed. Moreover, the single-phase structural evolution process and the Mg2+ ions storage mechanism of HAlVO are further investigated deeply by different in situ and ex situ characterization methods. This work proves that HAlVO is a potential candidate cathode material to satisfy the high-performance reversible Mg2+ ions storage, and the water-lubricated method is an effective strategy to improve the electrochemical performance of vanadium oxides cathode.
科研通智能强力驱动
Strongly Powered by AbleSci AI