FPL+: Filtered Pseudo Label-Based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation

人工智能 图像分割 计算机科学 模态(人机交互) 计算机视觉 适应(眼睛) 分割 医学影像学 图像(数学) 模式识别(心理学) 心理学 神经科学
作者
Jianghao Wu,Dong Guo,Guotai Wang,Qiang Yue,Huijun Yu,Kang Li,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3098-3109 被引量:4
标识
DOI:10.1109/tmi.2024.3387415
摘要

Adapting a medical image segmentation model to a new domain is important for improving its cross-domain transferability, and due to the expensive annotation process, Unsupervised Domain Adaptation (UDA) is appealing where only unlabeled images are needed for the adaptation. Existing UDA methods are mainly based on image or feature alignment with adversarial training for regularization, and they are limited by insufficient supervision in the target domain. In this paper, we propose an enhanced Filtered Pseudo Label (FPL+)-based UDA method for 3D medical image segmentation. It first uses cross-domain data augmentation to translate labeled images in the source domain to a dual-domain training set consisting of a pseudo source-domain set and a pseudo target-domain set. To leverage the dual-domain augmented images to train a pseudo label generator, domain-specific batch normalization layers are used to deal with the domain shift while learning the domain-invariant structure features, generating high-quality pseudo labels for target-domain images. We then combine labeled source-domain images and target-domain images with pseudo labels to train a final segmentor, where image-level weighting based on uncertainty estimation and pixel-level weighting based on dual-domain consensus are proposed to mitigate the adverse effect of noisy pseudo labels. Experiments on three public multi-modal datasets for Vestibular Schwannoma, brain tumor and whole heart segmentation show that our method surpassed ten state-of-the-art UDA methods, and it even achieved better results than fully supervised learning in the target domain in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助bodhi采纳,获得10
刚刚
dogsday完成签到,获得积分10
1秒前
Ao应助hazel采纳,获得30
2秒前
2秒前
琅琊稳重的团子完成签到,获得积分10
2秒前
zhengzhao发布了新的文献求助10
2秒前
l玖发布了新的文献求助10
4秒前
薛wen晶完成签到 ,获得积分10
5秒前
宋泽艺完成签到 ,获得积分10
5秒前
medzhou完成签到,获得积分10
5秒前
勤奋的绪完成签到,获得积分10
6秒前
8秒前
1121241发布了新的文献求助10
8秒前
缓慢的香芦完成签到,获得积分10
9秒前
Singularity应助元沅沅采纳,获得10
9秒前
爱静静应助元沅沅采纳,获得10
9秒前
健壮的半青完成签到 ,获得积分10
10秒前
11秒前
12秒前
[刘小婷]完成签到,获得积分10
14秒前
15秒前
Chris完成签到,获得积分10
17秒前
xiaojie发布了新的文献求助10
17秒前
1121241完成签到,获得积分10
18秒前
小羊羊完成签到,获得积分10
19秒前
ding应助歪比巴卜采纳,获得10
19秒前
19秒前
无味完成签到,获得积分10
21秒前
默存完成签到,获得积分10
21秒前
思源应助风中的冥王星采纳,获得10
22秒前
22秒前
23秒前
赘婿应助gis采纳,获得10
23秒前
iNk应助zf采纳,获得10
24秒前
shim完成签到,获得积分10
24秒前
rainny完成签到,获得积分10
25秒前
WWZ完成签到 ,获得积分20
26秒前
11111完成签到,获得积分10
26秒前
小黑发布了新的文献求助30
27秒前
高大绝义完成签到,获得积分10
27秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350209
求助须知:如何正确求助?哪些是违规求助? 2976028
关于积分的说明 8672575
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454866
科研通“疑难数据库(出版商)”最低求助积分说明 673541
邀请新用户注册赠送积分活动 664017