FPL+: Filtered Pseudo Label-Based Unsupervised Cross-Modality Adaptation for 3D Medical Image Segmentation

人工智能 图像分割 计算机科学 模态(人机交互) 计算机视觉 适应(眼睛) 分割 医学影像学 图像(数学) 模式识别(心理学) 心理学 神经科学
作者
Jianghao Wu,Dong Guo,Guotai Wang,Qiang Yue,Huijun Yu,Kang Li,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3098-3109 被引量:4
标识
DOI:10.1109/tmi.2024.3387415
摘要

Adapting a medical image segmentation model to a new domain is important for improving its cross-domain transferability, and due to the expensive annotation process, Unsupervised Domain Adaptation (UDA) is appealing where only unlabeled images are needed for the adaptation. Existing UDA methods are mainly based on image or feature alignment with adversarial training for regularization, and they are limited by insufficient supervision in the target domain. In this paper, we propose an enhanced Filtered Pseudo Label (FPL+)-based UDA method for 3D medical image segmentation. It first uses cross-domain data augmentation to translate labeled images in the source domain to a dual-domain training set consisting of a pseudo source-domain set and a pseudo target-domain set. To leverage the dual-domain augmented images to train a pseudo label generator, domain-specific batch normalization layers are used to deal with the domain shift while learning the domain-invariant structure features, generating high-quality pseudo labels for target-domain images. We then combine labeled source-domain images and target-domain images with pseudo labels to train a final segmentor, where image-level weighting based on uncertainty estimation and pixel-level weighting based on dual-domain consensus are proposed to mitigate the adverse effect of noisy pseudo labels. Experiments on three public multi-modal datasets for Vestibular Schwannoma, brain tumor and whole heart segmentation show that our method surpassed ten state-of-the-art UDA methods, and it even achieved better results than fully supervised learning in the target domain in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jonathan发布了新的文献求助10
3秒前
SYLH应助qizhang采纳,获得30
3秒前
3秒前
4秒前
左眼天堂发布了新的文献求助10
5秒前
5秒前
轻松的纸鹤完成签到,获得积分10
5秒前
mwang012发布了新的文献求助10
6秒前
6秒前
7秒前
Jameson完成签到,获得积分10
7秒前
Aloha发布了新的文献求助10
9秒前
jonathan完成签到,获得积分10
9秒前
Joan.完成签到,获得积分10
10秒前
zly完成签到 ,获得积分10
10秒前
11秒前
CodeCraft应助湛刘佳采纳,获得10
11秒前
你不知道完成签到 ,获得积分10
12秒前
不敢装睡发布了新的文献求助10
12秒前
15秒前
二七完成签到 ,获得积分10
15秒前
上官若男应助狂奔的酸笋采纳,获得30
18秒前
18秒前
xklm完成签到 ,获得积分10
20秒前
chx2256120完成签到,获得积分10
20秒前
mwang012完成签到,获得积分10
20秒前
梓辰完成签到,获得积分10
21秒前
ww发布了新的文献求助10
21秒前
21秒前
研友_QLX7x8发布了新的文献求助10
21秒前
隐形曼青应助dd采纳,获得10
23秒前
桐桐应助刻苦的煎蛋采纳,获得10
24秒前
湛刘佳发布了新的文献求助10
25秒前
机智的三国菌完成签到,获得积分10
25秒前
SGQT完成签到,获得积分10
28秒前
CHL发布了新的文献求助30
28秒前
香蕉觅云应助小枣采纳,获得10
29秒前
30秒前
香蕉觅云应助宋鹏浩采纳,获得10
31秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783