已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI applications to medical images: From machine learning to deep learning

人工智能 可解释性 计算机科学 卷积神经网络 深度学习 背景(考古学) 机器学习 医学影像学 过程(计算) 生物 操作系统 古生物学
作者
Isabella Castiglioni,Leonardo Rundo,Marina Codari,Giovanni Di Leo,Christian Salvatore,Matteo Interlenghi,Francesca Gallivanone,Andrea Cozzi,Natascha Claudia D’Amico,Francesco Sardanelli
出处
期刊:Physica Medica [Elsevier]
卷期号:83: 9-24 被引量:430
标识
DOI:10.1016/j.ejmp.2021.02.006
摘要

PurposeArtificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context.MethodsA narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections.ResultsWe first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way.ConclusionsBiomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安迪宝刚完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
3秒前
cocolu应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得30
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
小心翼翼发布了新的文献求助10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
Irene发布了新的文献求助10
4秒前
4秒前
科目三应助儒雅的如松采纳,获得10
4秒前
5秒前
维夏十一发布了新的文献求助10
6秒前
王计恩发布了新的文献求助10
7秒前
开朗雅霜发布了新的文献求助10
8秒前
双黄应助小鱼采纳,获得10
11秒前
积极的尔岚完成签到,获得积分10
13秒前
漂流发布了新的文献求助10
14秒前
xianglingliwei完成签到 ,获得积分0
16秒前
zyq完成签到,获得积分10
16秒前
sissiarno应助hivivian采纳,获得30
18秒前
维夏十一完成签到,获得积分10
19秒前
20秒前
23秒前
25秒前
25秒前
zhangz完成签到,获得积分10
26秒前
27秒前
大气摩托发布了新的文献求助10
27秒前
XL完成签到 ,获得积分10
28秒前
爱问的茜草完成签到,获得积分10
29秒前
彭于晏应助qq采纳,获得10
30秒前
31秒前
Min完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307135
求助须知:如何正确求助?哪些是违规求助? 2940891
关于积分的说明 8499375
捐赠科研通 2615081
什么是DOI,文献DOI怎么找? 1428662
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648337