数学
等级制度
组合数学
一般化
可积系统
性格(数学)
兰姆达
费米子
构造(python库)
玻色子
纯数学
类型(生物学)
物理
几何学
数学分析
量子力学
计算机科学
经济
程序设计语言
生物
市场经济
生态学
标识
DOI:10.1007/s10801-021-01066-2
摘要
In this paper, we firstly construct plethystic-type Fermions and define plethystic Boson–Fermion correspondence which is a generalization of the classical Boson–Fermion correspondence. Using the shifted tableau, we can define plethystic-type Schur-Q functions $$Q_\lambda ^\pi $$
from the plethystic-type Boson–Fermion correspondence, analogously to the way we get the Schur-Q functions $$Q_\lambda $$
from the classical Jacobi–Trudi formula. Then, as a generalization of BKP hierarchy, we construct the plethystic-type BKP hierarchy and obtain its tau functions. By a twisted coupled Jacobi–Trudi formula, we construct a plethystic B-type universal character and the corresponding integrable hierarchy which governs the plethystic B-type universal character.
科研通智能强力驱动
Strongly Powered by AbleSci AI