帧(网络)
人工智能
计算机科学
计算机视觉
跟踪(教育)
骨料(复合)
帧间
模式识别(心理学)
空间相关性
相关性
滤波器(信号处理)
RGB颜色模型
数学
参考坐标系
电信
教育学
心理学
复合材料
材料科学
几何学
作者
Futing Luo,Mingliang Zhou,Bing Fang
标识
DOI:10.1142/s0218126622500414
摘要
In this paper, we propose a strong spatio-temporal mechanism with correlation filters to solve multi-modality tracking tasks. First, we use the features of the previous four frames as spatio-temporal features, then aggregate the spatio-temporal features into the filters learning and positioning of the adjacent frame. Second, we enhance the temporal and spatial characteristics of the current frame filter by learning the previous four frame filters and spatial penalty. From the experimental results on the GTOT, VOT-TIR2019 and RGBT234 datasets, our strong spatio-temporal correlation filters has achieved excellent performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI