下胚轴
延伸率
生长素
赤霉素
生物
植物
内生
园艺
苗木
化学
生物化学
基因
极限抗拉强度
冶金
材料科学
作者
Qi Wu,Nana Su,Xin Huang,Xiaoping Ling,Min Yu,Jin Cui,Sergey Shabala
摘要
The aim of this study was to investigate effects of the hydrogen-rich water (HRW) on the vegetable growth, and explore the possibility of applying HRW for protected cultivation of vegetables. Results showed that compared with control, HRW treatment significantly promoted fresh weight, hypocotyl length and root length of mung bean seedlings. The strongest stimulation was observed for 480 μM H2 (60% of saturated HRW concentration) treatment. This concentration was used in the following experiments. The enhanced cell elongation was correlated with the changes in the level of endogenous phytohormones. In the dark-grown hypocotyls and roots of mung bean seedlings, HRW significantly increased the content of IAA and GA3. Addition of GA3 enhanced the hypocotyl elongation only. uniconazole, an inhibitor of GA3 biosynthesis, inhibited HRW-induced hypocotyl elongation, but did not affect root elongation. Exogenous application of IAA promoted HRW effects on elongation of both the hypocotyl and the root, while the IAA biosynthesis inhibitor TIBA negated the above affects. The general nature of HRW-induced growth-promoting effects was further confirmed in experiments involving cucumber and radish seedlings. Taken together, HRW treatment promoted growth of seedlings, by stimulating elongation of hypocotyl and root cells, via HRW-induced increase in GA and IAA content in the hypocotyl and the root respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI