Cell phones with GPS function as well as GPS loggers are widely used and we can easily obtain users' geographic information. Now classifying the measured GPS positions into indoor/outdoor positions is one of the major challenges. In this paper, we propose a robust indoor/outdoor detection method based on sparse GPS positioning information utilizing machine learning. Given a set of clusters of measured positions whose center position shows the user's estimated stayed position, we calculate the feature values composed of: positioning accuracy, spatial features and temporal feature of measured positions included in every cluster. Then a random forest classifier learns these feature values of the known data set. Finally, we classify the unknown sequence of measured positions into indoor/outdoor positions using the learned random forest classifier. The experiments demonstrate that our proposed method realizes the F 1 measure of 0.9836, which classifies measured positions into indoor/outdoor ones with almost no errors.