播种
微粒
沉积(地质)
环境科学
园艺
生物
生态学
沉积物
古生物学
作者
Udeshika Weerakkody,John W. Dover,Paul Mitchell,Kevin Reiling
标识
DOI:10.1016/j.scitotenv.2018.12.292
摘要
Traffic-generated particulate matter (PM) pollution is a serious threat to human health and the environment, especially in urban settings. Recent studies have revealed the effectiveness of living walls in the reduction of this pollution; these systems use variable planting designs and their topographical dynamics might have an impact on PM dry deposition. This present study, employing an experimentally manipulable living wall system using box (Buxus sempervirens L.) plants, examined whether plants arranged in a design with heterogeneous topography have a differential PM removal capacity compared to plants in a design with homogenous topography. Two planting designs using 'short' and 'tall' plants, were simultaneously used on this living wall and equally exposed to traffic-based PM for 5 consecutive days. PM accumulation on leaves was estimated using an Environmental Scanning Electron Microscope and ImageJ image analysis software. The experiment was replicated four times changing the position of each design on the wall, and any variation in PM capture levels on leaves belonging to different designs were identified using a Generalised Linear Mixed-effect Models (GLMM). The planting design with topographical heterogeneity resulted in significantly higher PM densities (PM10, PM2.5 and PM1) on leaf surfaces compared to a design with homogenous topography, indicating that topographical heterogeneity has a strong positive impact on the ability of plants to immobilise PM.
科研通智能强力驱动
Strongly Powered by AbleSci AI