量子点
激子
比克西顿
费斯特共振能量转移
超晶格
硒化镉
化学物理
物理
扫描电镜
材料科学
受激发射
光电子学
凝聚态物理
光学
激光器
荧光
作者
Rongfeng Yuan,Trevor D. Roberts,Rafaela M. Brinn,Alexander A. Choi,Ha H. Park,Chang Yan,Justin C. Ondry,Siamak Khorasani,David J. Masiello,Ke Xu,A. Paul Alivisatos,Naomi S. Ginsberg
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-10-20
卷期号:9 (42)
标识
DOI:10.1126/sciadv.adh2410
摘要
Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide-core/cadmium sulfide-shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.
科研通智能强力驱动
Strongly Powered by AbleSci AI