Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 模式识别(心理学) 实时计算 计算机网络 语言学 哲学 几何学 数学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:3
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私的易蓉完成签到,获得积分10
1秒前
1秒前
呆萌映寒完成签到,获得积分10
3秒前
3秒前
深情安青应助张凯采纳,获得10
5秒前
李金玉发布了新的文献求助10
7秒前
8秒前
kk完成签到,获得积分20
9秒前
奋斗小真完成签到,获得积分10
10秒前
贪玩靖柔发布了新的文献求助10
10秒前
河中医朵花完成签到,获得积分10
10秒前
cultromics发布了新的文献求助10
10秒前
10秒前
阿欢发布了新的文献求助10
12秒前
cfer完成签到,获得积分10
12秒前
千与千夜完成签到,获得积分10
12秒前
jychen85完成签到 ,获得积分10
12秒前
wk完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
项初蝶完成签到,获得积分10
16秒前
鳗鱼凡波发布了新的文献求助10
16秒前
邓力应助呆萌映寒采纳,获得20
18秒前
科研通AI2S应助自然的眼神采纳,获得10
18秒前
18秒前
和平使命发布了新的文献求助10
19秒前
高翔完成签到,获得积分10
20秒前
21秒前
21秒前
华仔应助kk采纳,获得10
21秒前
21秒前
萨尔莫斯完成签到,获得积分10
22秒前
bfhlf发布了新的文献求助10
23秒前
华仔应助鳗鱼凡波采纳,获得150
23秒前
兴奋的小笼包完成签到,获得积分20
24秒前
慧海拾穗完成签到 ,获得积分10
25秒前
兜兜揣满糖完成签到 ,获得积分10
25秒前
感性的初兰完成签到,获得积分10
26秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053902
求助须知:如何正确求助?哪些是违规求助? 2711045
关于积分的说明 7424610
捐赠科研通 2355580
什么是DOI,文献DOI怎么找? 1247273
科研通“疑难数据库(出版商)”最低求助积分说明 606339
版权声明 596012