Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 哲学 语言学 数学 计算机网络 几何学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:14
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关我屁事完成签到 ,获得积分10
2秒前
金宁完成签到,获得积分10
4秒前
miaomliu完成签到,获得积分10
7秒前
乐乐应助裘山彤采纳,获得10
11秒前
喻槿发布了新的文献求助10
12秒前
23秒前
23秒前
喻槿完成签到,获得积分10
28秒前
qiao发布了新的文献求助10
28秒前
英俊的铭应助喻槿采纳,获得10
33秒前
隐形曼青应助lcr采纳,获得10
34秒前
35秒前
37秒前
37秒前
37秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
38秒前
在水一方应助科研通管家采纳,获得10
38秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
39秒前
kiki完成签到,获得积分10
40秒前
魏头头发布了新的文献求助10
41秒前
辣目童子完成签到 ,获得积分10
44秒前
45秒前
Lucycomplex完成签到,获得积分10
47秒前
程昱发布了新的文献求助10
52秒前
韦雪莲完成签到 ,获得积分10
55秒前
魏头头完成签到 ,获得积分10
55秒前
katata完成签到 ,获得积分10
57秒前
小新完成签到 ,获得积分10
1分钟前
传奇3应助xdc采纳,获得10
1分钟前
务实笑柳完成签到 ,获得积分10
1分钟前
孙嘉畯完成签到 ,获得积分10
1分钟前
1分钟前
如意的冰双完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506