Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 哲学 语言学 数学 计算机网络 几何学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:14
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致冰海完成签到 ,获得积分10
1秒前
天天快乐应助星球日记采纳,获得10
3秒前
秋菲菲完成签到,获得积分10
4秒前
痕痕完成签到,获得积分10
5秒前
7秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
77发布了新的文献求助10
11秒前
11秒前
13秒前
深情安青应助白晨采纳,获得10
13秒前
脆脆鲨发布了新的文献求助10
13秒前
13秒前
英俊的铭应助Fu采纳,获得10
14秒前
changping应助是小孙呀采纳,获得10
14秒前
大白发布了新的文献求助10
14秒前
孙雪松完成签到,获得积分10
15秒前
17秒前
17秒前
19秒前
科研通AI6应助天真稀采纳,获得50
21秒前
Hello应助大白采纳,获得10
21秒前
小巧寻桃发布了新的文献求助10
22秒前
23秒前
HopeStar发布了新的文献求助10
23秒前
852应助嘉嘉采纳,获得10
23秒前
23秒前
sy发布了新的文献求助10
24秒前
0905完成签到,获得积分10
24秒前
ysws完成签到,获得积分10
25秒前
热心的流沙完成签到,获得积分10
25秒前
Akim应助小巧寻桃采纳,获得10
26秒前
26秒前
26秒前
和春住发布了新的文献求助20
26秒前
626完成签到,获得积分10
28秒前
29秒前
0905发布了新的文献求助20
29秒前
29秒前
劉浏琉完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051463
求助须知:如何正确求助?哪些是违规求助? 4278787
关于积分的说明 13337536
捐赠科研通 4094019
什么是DOI,文献DOI怎么找? 2240725
邀请新用户注册赠送积分活动 1247199
关于科研通互助平台的介绍 1176337