Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 计算机网络 语言学 哲学 几何学 数学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:14
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助one采纳,获得10
刚刚
1秒前
Ziyi_Xu完成签到,获得积分10
2秒前
像棉花糖的云完成签到 ,获得积分10
3秒前
Weiweiweixiao完成签到,获得积分10
3秒前
Arsenc完成签到,获得积分20
4秒前
wsf完成签到,获得积分20
4秒前
思源应助典雅问寒采纳,获得10
4秒前
5秒前
饱满凡灵完成签到,获得积分10
6秒前
6秒前
酷波er应助hhllhh采纳,获得10
7秒前
SophiaMX发布了新的文献求助10
7秒前
慕青应助ashley采纳,获得10
9秒前
大模型应助陈七采纳,获得10
9秒前
orixero应助珝潏采纳,获得10
9秒前
852应助肥波采纳,获得10
10秒前
Wang发布了新的文献求助10
10秒前
阿拉丁完成签到,获得积分10
11秒前
852应助xiaowei666采纳,获得30
11秒前
Akim应助李昕123采纳,获得10
11秒前
研友_VZG7GZ应助外向铃铛采纳,获得10
13秒前
爆米花应助xinlinwang采纳,获得10
13秒前
14秒前
15秒前
16秒前
17秒前
18秒前
18秒前
阿拉丁发布了新的文献求助10
19秒前
19秒前
浮游应助一只酸牛牛采纳,获得10
19秒前
20秒前
SiqiZhang发布了新的文献求助10
21秒前
one发布了新的文献求助10
21秒前
喵喵子发布了新的文献求助10
22秒前
丘比特应助cjf采纳,获得10
22秒前
22秒前
22秒前
x夏天发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541