Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 计算机网络 语言学 哲学 几何学 数学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:8
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zzx发布了新的文献求助10
1秒前
棉花糖完成签到,获得积分10
1秒前
3秒前
4秒前
5秒前
李健的小迷弟应助zzx采纳,获得10
5秒前
略略略完成签到,获得积分10
5秒前
FCL发布了新的文献求助10
6秒前
Gemma发布了新的文献求助10
7秒前
NatureLee发布了新的文献求助10
7秒前
luca发布了新的文献求助30
7秒前
卜娜娜发布了新的文献求助10
10秒前
10秒前
天天快乐应助休眠火山采纳,获得10
10秒前
雪芜发布了新的文献求助10
10秒前
renpp822发布了新的文献求助10
11秒前
susan完成签到 ,获得积分10
13秒前
13秒前
13秒前
15秒前
朱杰完成签到 ,获得积分20
16秒前
在水一方应助King采纳,获得10
17秒前
欧阳发布了新的文献求助10
18秒前
科研小能手完成签到,获得积分10
18秒前
思源应助小美采纳,获得10
18秒前
19秒前
不懈奋进应助斯文谷秋采纳,获得30
20秒前
bkagyin应助luca采纳,获得10
20秒前
烟花应助雪芜采纳,获得10
21秒前
乐乐应助雪芜采纳,获得10
21秒前
zho应助雪芜采纳,获得10
21秒前
21秒前
充电宝应助雪芜采纳,获得10
21秒前
充电宝应助雪芜采纳,获得10
21秒前
txy完成签到,获得积分10
22秒前
Egeria发布了新的文献求助10
24秒前
于某人发布了新的文献求助10
25秒前
852应助田田采纳,获得10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236178
求助须知:如何正确求助?哪些是违规求助? 2881896
关于积分的说明 8224233
捐赠科研通 2549884
什么是DOI,文献DOI怎么找? 1378686
科研通“疑难数据库(出版商)”最低求助积分说明 648444
邀请新用户注册赠送积分活动 623891