Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 哲学 语言学 数学 计算机网络 几何学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:8
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助11采纳,获得10
刚刚
Ava应助小底采纳,获得10
刚刚
神采奕奕呀完成签到,获得积分10
刚刚
1秒前
mondo发布了新的文献求助10
1秒前
3秒前
Athos_1992发布了新的文献求助10
3秒前
万木发布了新的文献求助10
4秒前
4秒前
xinyu发布了新的文献求助10
4秒前
4秒前
大个应助cornelia采纳,获得10
5秒前
所所应助诚心谷南采纳,获得10
6秒前
善良安蕾发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
爆米花应助1+1采纳,获得10
8秒前
12完成签到,获得积分10
8秒前
杨琳发布了新的文献求助10
8秒前
9秒前
creNdro完成签到,获得积分20
9秒前
9秒前
9秒前
安小红完成签到,获得积分10
10秒前
axiba发布了新的文献求助10
10秒前
xuan完成签到,获得积分10
10秒前
壮观缘分完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
平常的机器猫完成签到,获得积分10
11秒前
11秒前
Or1ll完成签到,获得积分10
11秒前
11秒前
ED应助Vice采纳,获得10
12秒前
冬柳发布了新的文献求助10
12秒前
yyyfff完成签到,获得积分10
12秒前
SciGPT应助青岚采纳,获得10
14秒前
14秒前
沐橘发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110