Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 哲学 语言学 数学 计算机网络 几何学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:14
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒心凝珍发布了新的文献求助10
1秒前
3秒前
独特的兰完成签到,获得积分10
5秒前
传奇3应助陈豆豆采纳,获得10
5秒前
学林书屋发布了新的文献求助30
5秒前
6秒前
月流瓦发布了新的文献求助20
6秒前
6秒前
jingyu完成签到,获得积分20
7秒前
翟淑雨完成签到,获得积分10
8秒前
IV完成签到,获得积分10
8秒前
fyukgfdyifotrf完成签到,获得积分10
9秒前
9秒前
小橙完成签到 ,获得积分10
10秒前
CodeCraft应助LucyLi采纳,获得10
10秒前
111231完成签到,获得积分10
10秒前
小木林发布了新的文献求助10
11秒前
kle完成签到,获得积分10
11秒前
11秒前
宓人英完成签到,获得积分10
11秒前
11秒前
12秒前
wyx完成签到,获得积分10
13秒前
炙热沛白发布了新的文献求助10
13秒前
orixero应助一二采纳,获得10
14秒前
busuan发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
14秒前
18秒前
jingyu发布了新的文献求助10
19秒前
QH_Y完成签到,获得积分10
20秒前
研友_n2r2Kn完成签到,获得积分10
20秒前
Orange应助月流瓦采纳,获得10
20秒前
20秒前
太叔若南完成签到 ,获得积分10
22秒前
24秒前
Ava应助伶俐的如容采纳,获得20
24秒前
24秒前
24秒前
学林书屋发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602595
求助须知:如何正确求助?哪些是违规求助? 4687667
关于积分的说明 14850700
捐赠科研通 4684658
什么是DOI,文献DOI怎么找? 2539964
邀请新用户注册赠送积分活动 1506717
关于科研通互助平台的介绍 1471428