Multi-sensor data fusion and bidirectional-temporal attention convolutional network for remaining useful life prediction of rolling bearing

计算机科学 传感器融合 块(置换群论) 深度学习 卷积神经网络 方位(导航) 特征(语言学) 数据挖掘 人工智能 无线传感器网络 特征工程 模式识别(心理学) 实时计算 哲学 语言学 数学 计算机网络 几何学
作者
Haopeng Liang,Jie Cao,Xiaoqiang Zhao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (10): 105126-105126 被引量:14
标识
DOI:10.1088/1361-6501/ace733
摘要

Abstract Remaining useful life (RUL) prediction is crucial in the field of engineering, which can reduce the frequency of accidents and the maintenance cost of machinery. With the increasing complexity of rotating machinery, the data analysis methods based on deep learning have become the mainstream methods of prediction work. However, most of the current RUL prediction methods only use single-sensor data as input, which cannot effectively use multi-sensor data. In addition, as an advanced deep learning prediction method, temporal convolutional network (TCN) only uses the past time information of vibration data to determine the current health status of bearings, while ignoring the importance of future time information of vibration data. To solve the above problems, a bearing RUL prediction method based on multi-sensor data fusion and bidirectional-temporal attention convolutional network (Bi-TACN) is proposed in this paper. In multi-sensor data fusion, multi-sensor data are combined into multi-channel data, and a channel-weighted attention is designed to emphasize the importance of each sensor data. Compared with traditional multi-sensor data fusion, the proposed fusion method allows deep prediction networks to learn more useful feature information from multi-sensor data. Then, Bi-TACN is developed to predict the RUL of bearings. Bi-TACN is mainly composed of the forward TCN block and the backward TCN block, both of which can learn the past and future time information of multi-sensor data simultaneously. Moreover, a temporal attention mechanism is embedded in Bi-TACN to adaptively calibrate the weights of the two TCN blocks, so as to achieve dynamic feature fusion of past and future time information. RUL prediction experiments are carried out through Xi’an Jiao tong University bearing dataset and PHM 2012 bearing dataset respectively. Compared with the advanced prediction methods, the proposed method can accurately predict the RUL of more types of bearings and has low prediction errors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ding应助dada采纳,获得10
1秒前
辛勤者完成签到,获得积分10
1秒前
1秒前
所所应助xqn采纳,获得10
2秒前
科研废物发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
整齐芷文完成签到,获得积分10
5秒前
淅淅沥沥完成签到,获得积分10
6秒前
五一完成签到,获得积分10
6秒前
星辰大海应助hao采纳,获得10
6秒前
舒心书南完成签到,获得积分10
6秒前
wuxunxun2015发布了新的文献求助10
6秒前
7秒前
蓝蓝发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
Tohka完成签到 ,获得积分10
10秒前
10秒前
11秒前
T1aNer299发布了新的文献求助10
11秒前
me关注了科研通微信公众号
11秒前
CT发布了新的文献求助10
12秒前
灿灿发布了新的文献求助10
12秒前
骆驼翔子完成签到,获得积分10
12秒前
12秒前
Orange应助自由能采纳,获得10
13秒前
13秒前
qdong发布了新的文献求助10
14秒前
goldenfleece发布了新的文献求助10
14秒前
15秒前
dada发布了新的文献求助10
16秒前
dudanc发布了新的文献求助10
16秒前
说不得大师完成签到 ,获得积分10
18秒前
19秒前
Reese完成签到 ,获得积分10
19秒前
小号完成签到,获得积分10
19秒前
20秒前
zxtwins完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660080
求助须知:如何正确求助?哪些是违规求助? 4831261
关于积分的说明 15089149
捐赠科研通 4818692
什么是DOI,文献DOI怎么找? 2578738
邀请新用户注册赠送积分活动 1533349
关于科研通互助平台的介绍 1492094