Optimization of sampling structure on unmanned aerial vehicle for gas leakage monitoring in the atmosphere

大气(单位) 泄漏(经济) 环境科学 采样(信号处理) 遥感 航空航天工程 计算机科学 工程类 气象学 地质学 计算机视觉 地理 滤波器(信号处理) 经济 宏观经济学
作者
Denglong Ma,Shanchun Guo,Yuxiang Zhou
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-15
标识
DOI:10.1017/s0263574724001978
摘要

Abstract In order to make a fast and accurate response to gas leakage event, e.g. gas leakage in hydrogen storage station, it is very important to identify and locate the leakage source accurately and quickly. Due to the flexibility and the adaptability of robots to harsh environments, leakage source tracing based on mobile robots has attracted more and more attention. However, the existing ground robots are limited by the ground environment and thus it is difficult to trace and locate the leakage in the complex environment with ground robots. Although unmanned aerial vehicle (UAV) can overcome the limitation of ground obstacles, there are still some problems in the accuracy and reliability of gas sampling due to the interference of flow field caused by UAV rotors to the surrounding gases. Based on computational fluid dynamic simulation, a simulation model of UAV with four rotors was established. Combined with test experiments, the influence of flow field around UAV on gas sampling under different UAV speeds, rotors assembly structures, leakage, and sampling conditions was analyzed and investigated. The optimized UAV assembly structure and gas sensor installation position were determined and verified by the simulations and experiments. The results showed that the sensor was less affected by the rotor airflow when the UAV rotor was reversely assembled and the gases were sampled above the UAV. This research can provide a guidance for gas sampling for emission source tracing with UAV for process safety management of energy gas storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文幻天完成签到,获得积分10
刚刚
1秒前
温暖涫完成签到 ,获得积分10
2秒前
2秒前
2秒前
melon完成签到,获得积分10
3秒前
土豆大魔王完成签到,获得积分10
3秒前
英姑应助liuling采纳,获得10
4秒前
蒹葭发布了新的文献求助10
4秒前
小乱完成签到 ,获得积分10
5秒前
Cookie发布了新的文献求助10
6秒前
6秒前
渣155136发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
zhxi发布了新的文献求助10
11秒前
眉眼之间发布了新的文献求助10
13秒前
领导范儿应助加减乘除采纳,获得10
13秒前
科研通AI5应助渣155136采纳,获得10
14秒前
edsenone发布了新的文献求助10
14秒前
丘比特应助蒹葭采纳,获得10
15秒前
17秒前
雨衣发布了新的文献求助10
18秒前
小若发布了新的文献求助10
19秒前
陶醉代云发布了新的文献求助100
20秒前
眉眼之间完成签到,获得积分10
21秒前
科研通AI5应助zxy采纳,获得10
21秒前
24秒前
25秒前
26秒前
阿岩哲关注了科研通微信公众号
27秒前
27秒前
科研通AI2S应助雨衣采纳,获得20
28秒前
30秒前
31秒前
不吃香菜发布了新的文献求助10
31秒前
31秒前
31秒前
喵喵虫发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516067
求助须知:如何正确求助?哪些是违规求助? 3098247
关于积分的说明 9238827
捐赠科研通 2793272
什么是DOI,文献DOI怎么找? 1532930
邀请新用户注册赠送积分活动 712455
科研通“疑难数据库(出版商)”最低求助积分说明 707290