AllSpark: Reborn Labeled Features from Unlabeled in Transformer for Semi-Supervised Semantic Segmentation

分割 变压器 人工智能 计算机科学 自然语言处理 模式识别(心理学) 工程类 电压 电气工程
作者
Haonan Wang,Qixiang Zhang,Yi Li,Xiaomeng Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2403.01818
摘要

Semi-supervised semantic segmentation (SSSS) has been proposed to alleviate the burden of time-consuming pixel-level manual labeling, which leverages limited labeled data along with larger amounts of unlabeled data. Current state-of-the-art methods train the labeled data with ground truths and unlabeled data with pseudo labels. However, the two training flows are separate, which allows labeled data to dominate the training process, resulting in low-quality pseudo labels and, consequently, sub-optimal results. To alleviate this issue, we present AllSpark, which reborns the labeled features from unlabeled ones with the channel-wise cross-attention mechanism. We further introduce a Semantic Memory along with a Channel Semantic Grouping strategy to ensure that unlabeled features adequately represent labeled features. The AllSpark shed new light on the architecture level designs of SSSS rather than framework level, which avoids increasingly complicated training pipeline designs. It can also be regarded as a flexible bottleneck module that can be seamlessly integrated into a general transformer-based segmentation model. The proposed AllSpark outperforms existing methods across all evaluation protocols on Pascal, Cityscapes and COCO benchmarks without bells-and-whistles. Code and model weights are available at: https://github.com/xmed-lab/AllSpark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tom发布了新的文献求助10
刚刚
wanci应助威武的人杰采纳,获得50
刚刚
龙仔完成签到 ,获得积分10
刚刚
Nic发布了新的文献求助10
1秒前
2秒前
2秒前
大萌发布了新的文献求助10
2秒前
2秒前
Owen应助三水采纳,获得10
3秒前
酷波er应助杨旭采纳,获得10
3秒前
3秒前
NexusExplorer应助感动的白梅采纳,获得10
3秒前
西奥发布了新的文献求助10
3秒前
长剑玉珥完成签到,获得积分10
3秒前
mika910完成签到 ,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
liao应助zwc采纳,获得10
5秒前
汉堡包应助无昵称采纳,获得10
5秒前
5秒前
sqcpk完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
小菜一碟完成签到,获得积分10
5秒前
ori完成签到,获得积分10
6秒前
SibetHu发布了新的文献求助10
7秒前
CodeCraft应助小华采纳,获得10
7秒前
7秒前
7秒前
bkagyin应助豆儿嘚小豆儿采纳,获得10
7秒前
典雅夏之完成签到,获得积分10
7秒前
hy发布了新的文献求助10
7秒前
7秒前
bkagyin应助啧啧啧采纳,获得10
8秒前
8秒前
曾经富发布了新的文献求助10
8秒前
8秒前
听雨应助桃子e采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440