促炎细胞因子
SMAD公司
纤维化
化学
糖尿病肾病
TLR4型
信号转导
炎症
CTGF公司
癌症研究
细胞生物学
内分泌学
内科学
生物
肾
受体
医学
生物化学
生长因子
作者
Duojun Qiu,Shan Song,Chen Ning,Yawei Bian,Yuan Chen,Wei Zhang,Huijun Duan,Yonghong Shi
标识
DOI:10.1016/j.cellsig.2023.110712
摘要
Diabetic nephropathy (DN) is one of the main complications of diabetes, and inflammation and fibrosis play an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and damage caused by toxic quinones. In the present study, we aimed to investigate the protective effects of NQO1 against diabetes-induced renal inflammation and fibrosis and the underlying mechanisms. In vivo, the kidneys of type 2 diabetes model db/db mice were infected with adeno-associated virus vectors to induce NQO1 overexpression. In vitro, human renal tubular epithelial (HK-2) cells transfected with NQO1 pcDNA3.1(+) were cultured under high-glucose (HG) conditions. Gene and protein expression was assessed by quantitative real-time PCR, Western blotting, immunofluorescence, and immunohistochemical staining. Mitochondrial reactive oxygen species (ROS) were detected with MitoSOX Red. Our study revealed that the expression of NQO1 was markedly downregulated and that Toll-like receptor (TLR)4 and TGF-β1 expression was upregulated in vivo and in vitro under diabetic conditions. Overexpression of NQO1 suppressed proinflammatory cytokine (IL-6, TNF-α, MCP-1) secretion, extracellular matrix (ECM) (collagen IV, fibronectin) accumulation and epithelial-mesenchymal transition (EMT) (α-SMA, E-cadherin) in the db/db mouse kidneys and HG-cultured HK-2 cells. Furthermore, NQO1 overexpression ameliorated HG-induced TLR4/NF-κB and TGF-β/Smad pathways activation. Mechanistic studies demonstrated that a TLR4 inhibitor (TAK-242) suppressed the TLR4/NF-κB signaling pathway, proinflammatory cytokine secretion, EMT and ECM-related protein expression in HG-exposed HK-2 cells. In addition, we found that the antioxidants N-acetylcysteine (NAC) and tempol increased the expression of NQO1 and decreased the expression of TLR4, TGF-β1, Nox1, and Nox4 and ROS production in HK-2 cells cultured under HG conditions. These data suggest that NQO1 alleviates diabetes-induced renal inflammation and fibrosis by regulating the TLR4/NF-κB and TGF-β/Smad signaling pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI